

ZCC Cutting Tools Europe GmbH

Produktneuheiten 09/2025

PANGU-Sorten **PG8005**, **PG8020**, **PG8030**, **PG1110**, **PG1120** – Spanbrecher **LH**Spanbrecher **F-QF** in der Sorte **YNT251D** – **ISO-Drehhalter mit Innenkühlung** – **zGroove Compact**Spanleitstufe **HG** – Eckfrässystem **EMP08** – Eckfrässystem **EMP10** – Hochvorschubfrässystem **XMR13**Serie **PGMS** – Wechselkopfbohrsystem **ZTE**

Das Unternehmen

huzhou Cemented Carbide Cutting Tools Co., Ltd. (ZCC-CT) mit Sitz in Zhuzhou, Hunan, in der Volksrepublik China ist der größte chinesische Hersteller von Hartmetallwerkzeugen und ein Schlüsselunternehmen der China Tungsten High-Tech Material Co. Ltd innerhalb der China Minmetals Corporation.

Seit der Gründung 1953 hat sich ZCC Cutting Tools Co., Ltd. durch Einsatz neuester Technologien und durch sein hoch qualifiziertes Personal zu einem der weltweit führenden Hartmetallhersteller mit inzwischen mehr als 2.000 Mitarbeitern entwickelt. Produktionstechnologien werden dabei kontinuierlich modernisiert und Produktionskapazitäten zur Realisierung des Unternehmenswachstums ausgebaut. Als Teil der Minmetals Corporation kann ZCC-CT die gesamte Wertschöpfungskette der modernen Hartmetallwerkzeug-Produktion, von der Rohstoffgewinnung bis zum beschichteten Endprodukt und aller dazugehörigen Zwischenschritte, vollständig selber abdecken.

Auf Basis neuester, europäischer Produktionstechnologien ist es daher jederzeit möglich, Produkte gleichbleibender Qualität auf höchstem Niveau anzubieten. Die umfangreiche Produktpalette beinhaltet Hartmetallwendeschneidplatten, Wendeschneidplatten aus Cermet, CBN, PKD und Keramik, Vollhartmetallwerkzeuge sowie Drehhalter, Fräskörper und passende Werkzeugsysteme. Die Produkte werden grundsätzlich nach den gängigen internationalen Standards, wie z.B. ISO, DIN, ANSI, JIS und BSI produziert. Darüber hinaus bietet ZCC-CT kundenspezifische Lösungen und spezielle Hartmetallprodukte nach individueller Spezifikation an.

Forschung und Entwicklung haben bei ZCC-CT einen besonders hohen Stellenwert. Die Investitionen hierzu sind überdurchschnittlich. Mit hervorragend ausgebildeten Ingenieuren, Naturwissenschaftlern und einem kompetenten, internationalen Team erforscht ZCC Cutting Tools die erforderlichen Grundlagen und entwickelt auf dieser Basis permanent neue und verbesserte Produkte.

Das Unternehmen strebt kontinuierlich nach Qualitätsverbesserungen, um den stetig steigenden Anforderungen an neue und innovative Produkte, im Kundeninteresse, gerecht zu werden und den individuellen Kundennutzen steigern zu können. Sowohl die Produktion als auch die Verwaltung in China unterliegen den ISO Normen 9001:2008 und im Bereich Umwelt-Management der ISO 14001:2004.

ereits seit 2003 befindet sich der Sitz der europäischen ZCC-CT Zentrale, die ZCC Cutting Tools Europe GmbH, inklusive des europäischen Zentrallagers in Düsseldorf (Deutschland). Inzwischen werden von dort alle europäischen Länder sowie die angrenzenden Märkte betreut.

Das Qualitätsmanagementsystem der ZCC Cutting Tools Europe GmbH ist im Bereich "Vertrieb und Logistik von Werkzeugen für die Metallverarbeitung" nach der DIN EN ISO 9001:2008 zertifiziert.

Ein Test- und Demonstrationszentrum steht darüber hinaus für die Optimierung von Kundenprozessen nach individuellen Anforderungen zur Verfügung.

Außendienstmitarbeiter und Vertriebspartner in Europa betreuen Hand in Hand Kunden vor Ort. ZCC-CT Anwendungstechniker stehen Ihnen darüber hinaus auch telefonisch, per E-Mail oder persönlich in Ihrer Produktionsumgebung mit Kompetenz, Erfahrung und Persönlichkeit zur Verfügung.

Der gesamte Vertriebsaußendienst- und -innendienst kümmert sich europaweit mit Muttersprachlern um Ihre Anfragen und sorgt zusammen mit den Mitarbeitern in der Logistik und auf der Basis eines ausgefeilten Service-Systems dafür, dass alle Bestellungen so schnell wie möglich auf den Weg zu Ihnen kommen. Die Zweigniederlassungen in Frankreich und Großbritannien sorgen für zusätzliche, regionale Kundennähe.

Ile gemeinsam sind wir, die ZCC Cutting Tools Europe GmbH, für Sie da und stehen Ihnen als kompetenter Partner in allen Fragen der zerspanenden Fertigung zur Seite. Das ist unsere Definition von "Mehrwert durch Partnerschaft".

In dieser Broschüre warten folgende Produktneuheiten auf Sie:

Produktneuheiten 09/2025

ALLGEMEIN	E DREHBEARBEITUNG	Seite
	Sorte PG8005 – Premiumsorte für maximale Verschleißfestigkeit	A12
	Sorte PG8030 – CVD-Premium-Allrounder für Hitzebeständigkeit	A13
	Sorte PG1110 – PVD-Premiumsorte für hitzebeständige Drehbearbeitung	A14
	Spanbrecher LH – Prozesssicher im mittleren Anwendungsbereich	A15
	Spanbrecher F-QF in der Sorte YNT251D – Premiumkombi fürs Superfinishing	A16
2000 0	ISO-Drehhalter mit Innenkühlung – Optimale Temperaturkontrolle für volle Prozesssicherheit	A17
N- UND A	BSTECHEN	Seite
and the	Sorte PG1110 – Höchste Verschleißbeständigkeit bei anspruchsvollen Werkstoffen	A29
eq ?	Sorte PG1120 – Höchste Prozesssicherheit bei wechselnden Schnittbedingungen	A30
	zGroove Compact – Kompaktes Design und einfaches Handling	A31
4	Spanleitstufe HG – Speziell für zähe und weiche Werkstoffe	A36
ENDESCH	NEIDPLATTEN-FRÄSER	Seite
0	Sorte PG8020 – Hochleistungsschlichten von hitzebeständigem Stahlguss	B46
O	Sorte PG8030 – Hocheffiziente Frässorte für HRSA-Werkstoffe	B47
S IN T	Eckfrässystem EMP08 – 90° Schulternfräsen – effizient und prozesssicher	B48
	Eckfrässystem EMP10 – Maximale Vorschubleistung für Ihre Fertigung	B54
(M) II	Hochvorschubfrässystem XMR13 – Für Höchstleistung bei Vorschub und Wirtschaftlichkeit	B60
HM-FRÄSE	ER .	Seite
	Serie PGMS – Die ideale Lösung für komplexe Konturen	B74
'ECHSELKO	PFBOHRER	Seite
	Wechselkopfbohrsystem ZTE – Prozesssicheres Bohren mit hohem Zerspanvolumen	C78

Für Sie im Überblick: Inhalte vergangener Produktneuheiten-Broschüren

Produktneuheiten 03/2025

WENDESCHNEIDPLATTEN-FRÄSER

Hochvorschubfrässystem XMR12 – Maximale Zerspanleistung und minimale Bearbeitungszeit

VHM-FRÄSER

Serie XM-2C – Flexibel einsetzbarer Wechselkopf-Entgratfräser

VHM-BOHRER

Serie UL – VHM-Tieflochbohrer für zähe Werkstoffe

Produktneuheiten 09/2024

ALLGEMEINE DREHBEARBEITUNG

Spanbrecher QF – Maximale Spankontrolle bei der Schlichtbearbeitung

WENDESCHNEIDPLATTEN-FRÄSER

Scheibenfrässystem SMP09 – Vielseitiges Tangential-Frässystem

WERKZEUGHALTER

Hydrodehnspannfutter zClamp Hydro – Sicher gespannt für maximale Prozesssicherheit

Produktneuheiten 09/2023

ALLGEMEINE DREHBEARBEITUNG

Spanbrecher XLR – Mit Leichtigkeit durch die Schruppbearbeitung

Hochvorschubdrehsystem ONMX – Neue Octa-Wendeschneidplatten- u. Halterserie für die produktive Drehbearbeitung **Hochvorschubdrehsystem PNMX** – Neue Penta-Wendeschneidplatten- u. Halterserie für die produktive Drehbearbeitung

GEWINDEDREHEN

zType Gewinded rehhalter mit Innenk"uhlung - Neue Serie f"ur die hochqualitative Gewindebearbeitung

VHM-BOHRER

Flachbohrer FD – VHM-Bohrer mit 180° Spitzenwinkel

Produktneuheiten 03/2023

ALLGEMEINE DREHBEARBEITUNG

Sorte YBG205H – Die Temperaturbeständige in der Drehbearbeitung

EIN- UND ABSTECHEN

 $\textbf{Spanleitstufe} \ \textbf{MU} - \textbf{Universell einsetzbar mit maximaler Spankontrolle}$

WENDESCHNEIDPLATTEN-FRÄSER

Planfrässystem FME17 – Produktiver Allrounder für die Bearbeitung von Planflächen und Konturen

Tauchfrässystem EMP05 – Echter Allrounder in der Zerspanung

Rundplattenfrässystem FMR06 – Maximale Stabilität bei der Planbearbeitung

Sorte CSX1000 – High Performance für Superlegierungen

Spanbrecher APL – Universelle Geometrie

Produktneuheiten 09/2022

ALLGEMEINE DREHBEARBEITUNG

XMH Spanbrecher – Mit Leichtigkeit durch die mittlere Bearbeitung

GEWINDEDREHEN

zType Gewindedrehplatten – Neue Serie für die hochqualitative Gewindebearbeitung

WENDESCHNEIDPLATTEN-FRÄSER

FMA12 Planfrässystem – Jetzt mit neuer Plattengröße ONHU09T5

EMP14 Aluminium-Frässystem – Exakte 90° für die Schulterbearbeitung

FMR11 Rundplattenfrässystem – Maximale Zerspanungsleistung

VHM-FRÄSER

VPM Serie – Jetzt auch als Torusfräser und mit Weldon-Spannfläche

Produktneuheiten 05/2022

ALLGEMEINE DREHBEARBEITUNG

miniTURN – Mehr Performance mit neuer Sorte YPG202

WENDESCHNEIDPLATTEN-FRÄSER

Sorte YBG205H – Die Temperaturbeständige

FMP06 – Leistungsfähige Hartbearbeitung mit 88°

FMA17 – Vielseitiges Frässystem für die produktive Planbearbeitung

FMP17 – Produktiver Allrounder für die Bearbeitung von Planflächen und Konturen

FMR04 – Erweiterung: Jetzt mit neuen Wendeschneidplatten und Spanbrechern

VHM-FRÄSER

TM Serie – Erweitertes Programm mit Mini-Torusfräsern ab Ø1,0 mm

VPM Serie – Vollnuten mit Vollgas

VHM-BOHRER

UD Serie – Erweiterung: Jetzt ab Ø1,0 mm mit Innenkühlung

A

Drehen

B

_

ohren

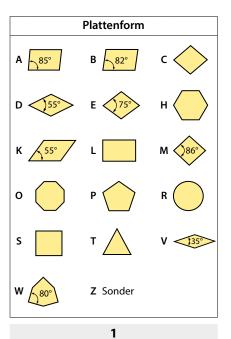
D

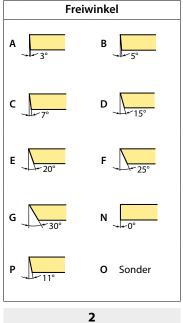
Technische Information

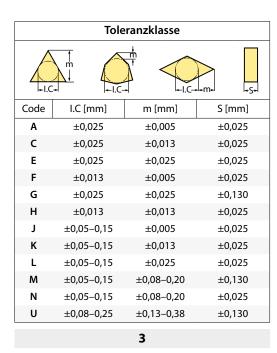
Allgemeine Drehbearbeitung

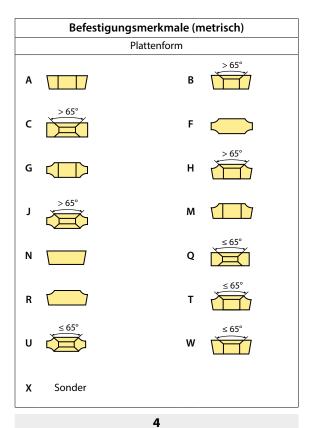
ISO-Code – Allgemeine Dreh-Wendeschneidplatten	A8-A9
ISO-Code – Außendrehhalter	A10-A11
PANGU Sorte PG8005	A12

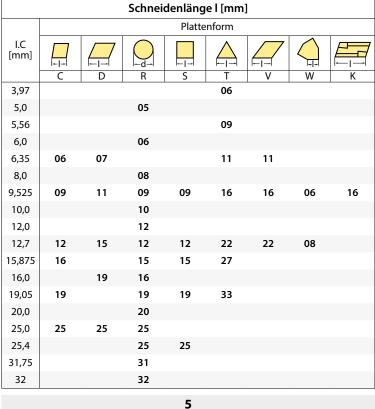
PANGU Sorte PG8005	A12
PANGU Sorte PG8030	A13
PANGU Sorte PG1110	A14
Spanbrecher LH	A15
Spanbrecher F-QF mit Sorte YNT251D	A16
ISO-Drehhalter mit Innenkühlung	A17-A23

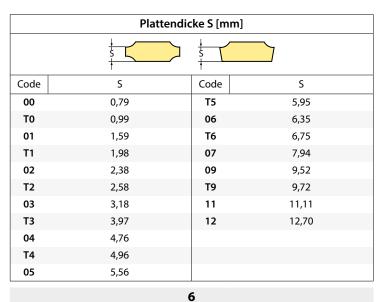


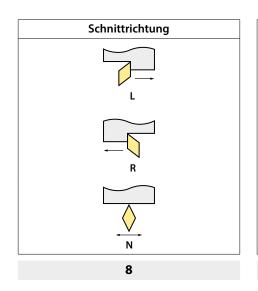


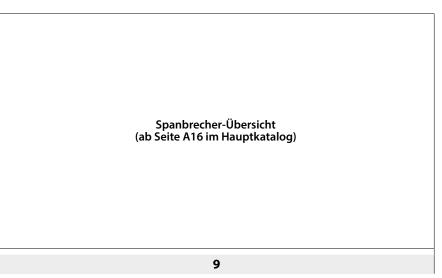

E


ISO-Standard


80 G 22 04 (N)







Eckenradius r [mm]				
r /				
Code	r			
00	-			
02	0,2			
04	0,4			
08	0,8			
12	1,2			
16	1,6			
20	2,0			
24	2,4			
32	3,2			
Χ	Sonder			
МО	Runde Platten			

ANSI-Standard

[mm] 6.35	Zoll
6.35	0.350
	0.250
9.525	0.375
12.7	0.500
15.875	0.625
19.05	0.750
25.4	1.000
	12.7 15.875 19.05

	Plattendick	e
Code	[mm]	Zoll
2	3.18	0.125
3	4.76	0.187
4	6.35	0.250
5	7.94	0.313
6	9.52	0.375

	Eckenradiu	s
Code	[mm]	Zoll
0	0.2	0.008
1	0.4	0.016
2	0.8	0.031
3	1.2	0.047
4	1.6	0.063
5	2.0	0.079
6	2.4	0.094
	7	

A

Orehen

B

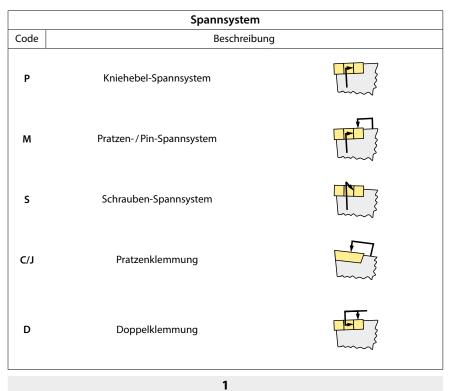
räsen

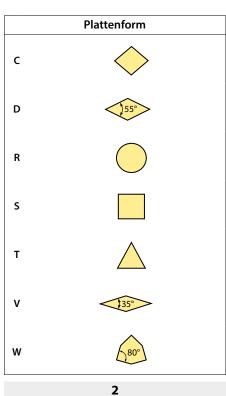
C

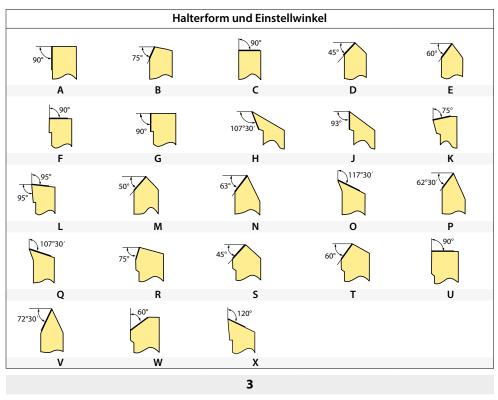
Bohren

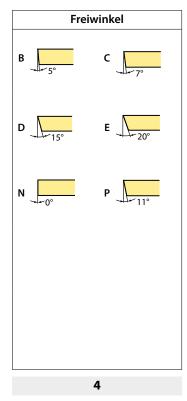
D

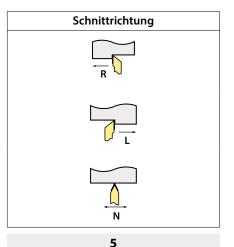
Technische

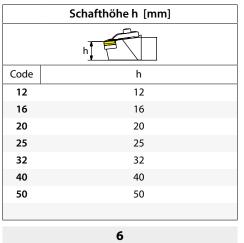

Ε


gex


B


E





	Schaftbreite b [mm]
	b
Code	b
12	12
16	16
20	20
25	25
32	32
40	40
50	50
	7

Halterlänge L [mm]			
L			
Code	L		
Н	100		
K	125		
М	150		
P	170		
Q	180		
R	200		
S	250		
T	300		
	8		

			Cchnoidor	dänga l [m	m1		
Schneidenlänge I [mm]							
				Plattenform			
I.C [mm]		<u> </u>	\bigcap_{-d}	-1-		<u> </u>	<u> - -</u>
	С	D	R	S	T	V	W
5,56					09		
6,35	06	07			11		
9,525	09	11	09	09	16	16	06
12,7	12	15	12	12	22	22	08
15,875	16	19	15	15	27		
19,05	19		19	19	33		
25,4	25		25	25	44		
32			32				
				٥			

C

3ohren

D

Technische

E

dex

PANGU

Sorte PG8005

Premiumsorte für maximale Verschleißfestigkeit

IHRE VORTEILE

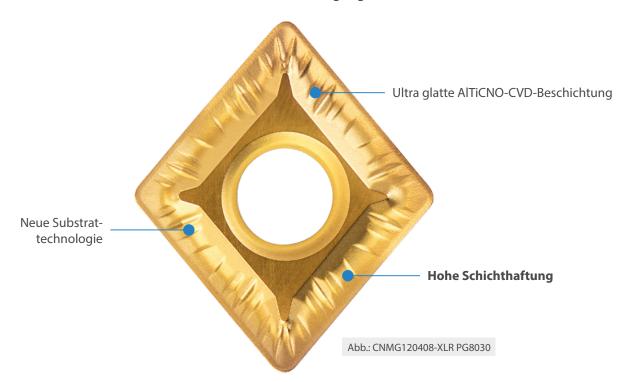
- **Reibungsminimierende** Hochleistungsbeschichtung (AlTiCNO-CVD) mit perfekt polierter Oberfläche
- Optimal für schwer zerspanbare Werkstoffe wie Superlegierungen und thermisch resistenten Stahlguss
- Lange Standzeiten durch geringen Verschleiß

Zum Produktlaunch verfügbare Artikel mit der neuen Sorte PG8005:

Artikel	Lager
CNEG120404-NF PG8005	•
CNEG120408-NF PG8005	•
CNMG120408-SNR PG8005	0
CNMG120408-XLR PG8005	•
DNEG150604-NF PG8005	•
DNEG150608-NF PG8005	•
DNMG150608-SNR PG8005	0
VBET160404-NF PG8005	•
VBET160404-NGF PG8005	•
VBET160408-NF PG8005	•
VBET160408-NGF PG8005	•
VBMT160408-SNR PG8005	•
VCGT160404-NGF PG8005	•

Ab Lager Auf Anfrage

Artikel	Lager
VCGT160408-SNR PG8005	•
VNEG160404-NF PG8005	•
VNEG160408-NF PG8005	•
VNEG160408-NGF PG8005	•
VNMG160408-SNR PG8005	0
WNMG080408-SNR PG8005	0
Ab Lager	o Auf Anfrage


Sorte PG8030

CVD-Premium-Allrounder für Hitzebeständigkeit

IHRE VORTEILE

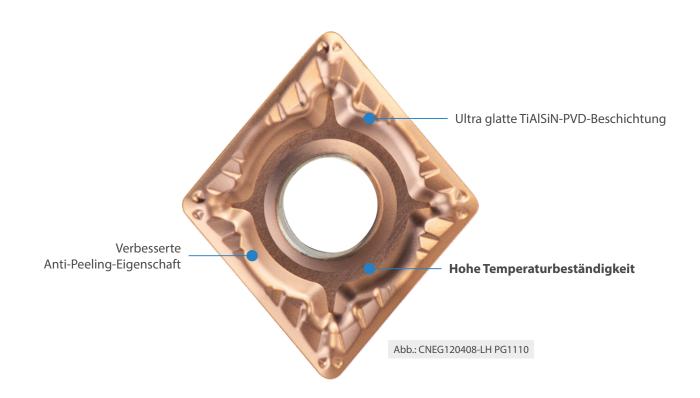
- Optimiert für die Drehbearbeitung von anspruchsvollen Werkstoffen wie Superlegierungen und hitzebeständigem Stahlguss
- Minimiert Verschleiß dank mechanisch belastbarem Substrat und thermisch stabiler Beschichtung
- Premium-Beschichtungstechnologie (AlTiCNO-CVD) für geringen Verschleiß dank polierter Schichtoberfläche
- Ideal für kontinuierliche und unterbrochene Schnittbedingungen

Zum Produktlaunch verfügbare Artikel mit der neuen Sorte PG8030:

Artikel	Lager
CNMG120408-XLR PG8030	•
CNMG120412-XLR PG8030	•
CNMG120416-XLR PG8030	•
CNMG160612-XLR PG8030	•
CNMG190612-XLR PG8030	•
CNMG190616-XLR PG8030	•
CNMG190624-XLR PG8030	•
CNMM190616-XLR PG8030	0
CNMM190624-XLR PG8030	•
CNMM250924-XLR PG8030	0
DNMG150608-XLR PG8030	•
RCMT2507MO-GR PG8030	0
RCMT2507MO PG8030	0
RCMX3209MO-GR PG8030	0

• Ab Lager O Auf Anfrage

Artikel	Lager
SNMG190624-XLR PG8030	•
SNMM190616-XLR PG8030	0
SNMM190624 - XLR PG8030	0
SNMM250924-XLR PG8030	0
TNMG160408-XLR PG8030	•
A.I. I.	A C A C


PANGU

Sorte PG1110

PVD-Premiumsorte für hitzebeständige Drehbearbeitung

IHRE VORTEILE

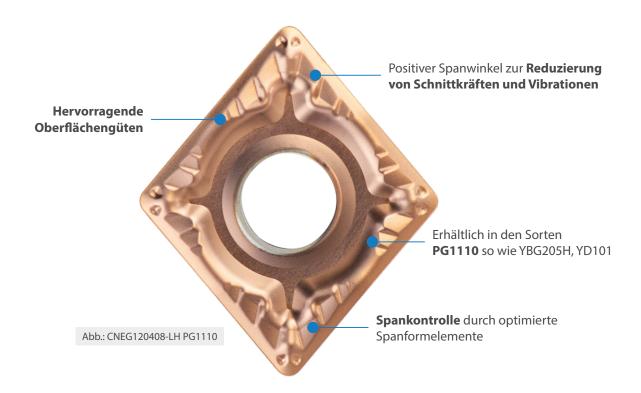
- Innovatives Beschichtungskonzept (TiAlSiN-PVD) für **optimierte Haftung** und Oberfläche mit **niedrigem Reibungskoeffizienten**
- Perfekt für den Einsatz bei schwer zerspanbaren Materialien
- Höchste Hitzebeständigkeit ermöglicht **maximale Standzeiten**

Zum Produktlaunch verfügbare Artikel mit der neuen Sorte PG1110:

Artikel	Lager
CNEG120404-LH PG1110	•
CNEG120408-LH PG1110	•
CNEG120412-LH PG1110	•
CNEG120416-LH PG1110	•
CNEG160608-LH PG1110	•
CNEG160612-LH PG1110	•
CNEG160616-LH PG1110	•
DNEG150604-LH PG1110	•
DNEG150608-LH PG1110	•
DNEG150612-LH PG1110	•
DNEG150616-LH PG1110	0
SNEG120408-LH PG1110	•
SNEG120412-LH PG1110	•
SNEG120416-LH PG1110	0

• Ab Lager O Auf Anfrage

Artikel	Lager
VNEG160408-LH PG1110	•
WNEG080404-LH PG1110	•
WNEG080408-LH PG1110	•
WNEG080412-LH PG1110	•
A.L. I	



Spanbrecher LH

Prozesssicher im mittleren Anwendungsbereich

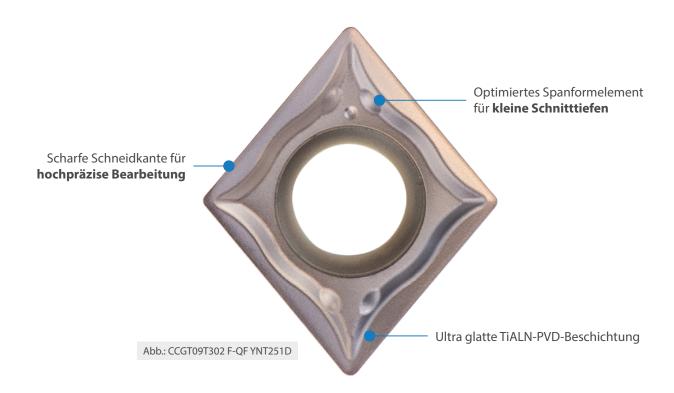
IHRE VORTEILE

- Kontrollierte Zerspanung in einem breiten Anwendungsgebiet
- Top-Performance in NE-Metallen und Superlegierungen
- Großer Spanwinkel: Optimierte Spanabfuhr Prozesssicher selbst in unterschiedlichen Vorschubbereichen
- **Deutlich minimierte Aufbauschneidenbildung** dank polierter Spanfläche

Zum Produktlaunch verfügbare Artikel mit dem neuen Spanbrecher LH:

	1
Artikel	Lager
CNEG120404-LH PG1110	•
CNEG120408-LH PG1110	•
CNEG120412-LH PG1110	•
CNEG120416-LH PG1110	•
CNEG160608-LH PG1110	•
CNEG160612-LH PG1110	•
CNEG160616-LH PG1110	•
DNEG150604-LH PG1110	•
DNEG150608-LH PG1110	•
DNEG150612-LH PG1110	•
DNEG150616-LH PG1110	•
SNEG120408-LH PG1110	•
SNEG120412-LH PG1110	•
SNEG120416-LH PG1110	•
A.L. I.	

Artikel	Lager
VNEG160408-LH PG1110	•
WNEG080404-LH PG1110	•
WNEG080408-LH PG1110	•
WNEG080412-LH PG1110	•
A.L. I.	A (A (



Spanbrecher F-QF in der Sorte YNT251D

Premiumkombi fürs Superfinishing

IHRE VORTEILE

- **Dünn beschichtete** Cermet-Sorte (TiAlN-PVD)
- Hohe Gleiteigenschaften ermöglichen optimalen Spanabfluss
- Für Superfinishing mit **besten Oberflächengüten** bei kleinen Schnitttiefen und Vorschüben
- Lange Standzeiten in einem breiten Anwendungsspektrum

Zum Produktlaunch verfügbare Artikel mit dem neuen Spanbrecher F-QF/Sorte YNT251D:

Artikel	Lager
CCGT060201F-QF YNT251D	•
CCGT060202F-QF YNT251D	•
CCGT060204F-QF YNT251D	•
CCGT09T301F-QF YNT251D	•
CCGT09T302F-QF YNT251D	•
CCGT09T304F-QF YNT251D	•
DCGT070201F-QFYNT251D	•
DCGT070202F-QF YNT251D	•
DCGT070204F-QF YNT251D	•
DCGT11T301F-QFYNT251D	•

• Ab Lager O Auf Anfrage

•	
Artikel	Lager
DCGT11T302F-QF YNT251D	•
DCGT11T304F-QF YNT251D	•
DPGT11T301F-QF YNT251D	0
DPGT11T302F-QF YNT251D	0
VBGT110301F-QF YNT251D	•
VBGT110302F-QF YNT251D	•
VBGT110304F-QF YNT251D	•
VCGT110301F-QF YNT251D	•
VCGT110302F-QF YNT251D	•
VCGT110304F-QF YNT251D	•
a Ab Lawau	. A f A f

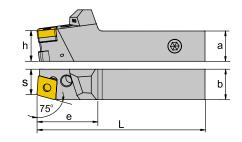


ISO-Drehhalter mit Innenkühlung

Optimale Temperaturkontrolle für volle Prozesssicherheit

IHRE VORTEILE

- Zielgerichte Kühlmittelzufuhr und Freiflächenkühlung für **optimale Spanabfuhr** und **lange Standzeiten**
- Höhere Produktivität durch minimierte Bearbeitungstemperatur
- Verbessertes Handling durch optimierte Schaftlängen für VDI-Aufnahmen mit Kühlmittelübergabe



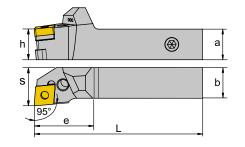
CN** Halter (außen)

P-Klemmung

PCBNR/LC Kr: 75°

Rechtsausführung

Artikel		Lager		Abmessungen [mm]					WSP		
Artikel	*	R	L	a	b	L	h	S	e	М	
PCBNR/L2020X12C	*	•	•	20	20	112	20	17	42	G1/8	CN**1204**
PCBNR/L2525X12C	*	•	•	25	25	127	25	22	42	G1/8	CN**1204**
PCBNR/L2525X16C	*	•	•	25	25	132	25	22	47	G1/8	CN**1606**


- Ab Lager O Auf Anfrage
- * Mit Innenkühlung

	Ersatzteile		
	WSP	CN**1204**	CN**1606**
	ØD	16-32	16-40
	Kniehebel	L4	L5
	Schraube	LEM8×21 (10,2 Nm)	LEM8×25 (10,2 Nm)
	Unterlage	C12AP	C16AP
Ŋ	Rohrstift	SP4	SP5
	Schlüssel	WH30L	WH30L

PCLNR/LC Kr: 95°

Rechtsausführung

		Lag		Abmessungen [mm]					WSP		
Artikel	*	R	L	a	b	L	h	S	e	М	
PCLNR/L2020X12C	*	•	•	20	20	112	20	27	42	G1/8	CN**1204**
PCLNR/L2525K12C	*	•	•	25	25	125	25	32	40	G1/8	CN**1204**
PCLNR/L2525X16C	*	•	•	25	25	131	25	32	46	G1/8	CN**1606**
PCLNR/L3232X19C	*	•	•	32	32	153	32	40	53	G1/8	CN**1906**

[•] Ab Lager O Auf Anfrage

^{*} Mit Innenkühlung

	Ersatzteile			
	WSP	CN**1204**	CN**1606**	CN**1906**
	ØD	16-32	16-40	25-40
	Kniehebel	L4	L5	L6
	Schraube	LEM8×21 (10,2 Nm)	LEM8×25 (10,2 Nm)	LEM10×27 (16,6 Nm)
	Unterlage	C12AP	C16AP	C19AP
H	Rohrstift	SP4	SP5	SP6
_	Schlüssel	WH30L	WH30L	WH40L

Drehen

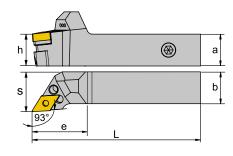
В

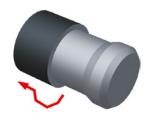
räsen

Bohren

Technische Information

Ε



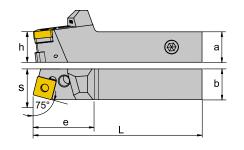

DN** Halter (außen) P-Kl

P-Klemmung

PDJNR/LC Kr: 93°

 $Rechts ausf \"{u}hrung$

		Lag	ger			Abmes	ssunger	n [mm]			WSP
Artikel	*	R	L	a	b	L	h	S	e	М	
PDJNR/L2020X11C	*	•	•	20	20	106	20	27	36	G1/8	DN**1104**
PDJNR/L2525X11C	*	•	•	25	25	121	25	32	36	G1/8	DN**1104**
PDJNR/L2020X15C	*	•	•	20	20	115	20	27	45	G1/8	DN**1506**
PDJNR/L2525X15C	*	•	•	25	25	128	25	32	43	G1/8	DN**1506**


- Ab Lager O Auf Anfrage
- * Mit Innenkühlung

	Ersatzteile		
	WSP	DN**1104**	DN**1506**
	ØD	16-32	20-40
	Kniehebel	L3	L4B
	Schraube		LEM8×21
	Schraube		(10,2 Nm)
	Schraube	LEM6×13,4A	
	Sciliause	(7,0 Nm)	
	Unterlage	D11AP	D15AP
	Rohrstift	SP3	SP4
	Schlüssel	WH25L	WH30L
•			

PSBNR/LC Kr: 75°

Rechtsausführung

		La	ger			Abme	WSP				
Artikel	*	R	L	a	b	L	h	S	e	М	
PSBNR/L2020X12C	*	•	•	20	20	112	20	17	42	G1/8	SN**1204**
PSBNR/L2525X12C	*	•	•	25	25	127	25	22	42	G1/8	SN**1204**
PSBNR/L3232X19C	*	•	•	32	32	155	32	27	55	G1/8	SN**1906**

• Ab Lager O Auf Anfrage

* Mit Innenkühlung

	Ersatzteile		
	WSP	SN**1204**	SN**1906**
	ØD	20-40	25-40
	Kniehebel	L4	L6
- 6	Schraube	LEM8×21	LEM10×27
	Schraube	(10,2 Nm)	(16,6 Nm)
	Unterlage	S12AP	S19AP
III	Rohrstift	SP4	SP6
	Schlüssel	WH30L	WH40L

Drehen

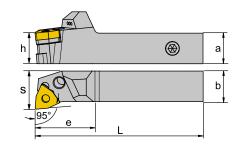
В

räsen

3ohren

Technische Information

Ε


ndex

P-Klemmung

WN** Halter (außen)

		Lagei				Abme	WSP				
Artikel	*	R	L	a	b	L	h	S	e	М	
PWLNR/L2020X08C	*	•	•	20	20	112	20	25	42	G1/8	WN**0804**
PWLNR/L2525X08C	*	•	•	25	25	127	25	31	42	G1/8	WN**0804**

- o Auf Anfrage Ab Lager
- * Mit Innenkühlung

	Ersatzteile	
	WSP	WN**0804**
	ØD	20-32
	Kniehebel	L4
_	Schraube	LEM8×21
	Schraube	(10,2 Nm)
	Unterlage	W08AP
Ŋ	Rohrstift	SP4
	Schlüssel	WH30L

Dreh-WSP, negativ, positiv

					eddı			Schr			eit v _c [m/	min]		-	
				Brinell-	Isgru					HC (CVD)	1			
	Werkstoffgruppe	Zusammensetzung/Gefüg	je/Wärmebehandlung	Härte HB	Zerspanungsgruppe	PG11	10 ///	PANGU	PG80	05 ///	PANGU	PG80	20 🚚	PANGU	
					rspai	Vor	Vorschub [mm]			schub [n	nm]	Vor	rschub [n	nm]	
					Zei	0,1	0,3	0,6	0,1	0,3	0,6	0,1	0,3	0,6	
		ca. 0,15 % C	geglüht	125	1										
		ca. 0,45 % C	geglüht	190	2										
	Unlegierter Stahl	ca. 0,45 % C	vergütet	250	3										
		ca. 0,75 % C	geglüht	270	4										
		ca. 0,75 % C	vergütet	300	5										
Р			geglüht	180	6										
	Niedriglegierter Stahl		vergütet	275	7										
			vergütet	300	8										
			vergütet	350	9										
	Hochlegierter Stahl und hoch-		geglüht	200	10										
	legierter Werkzeugstahl		gehärtet und angelassen	325	11										
		ferritisch/martensitisch	geglüht	200	12										
М	Nichtrostender Stahl	martensitisch	vergütet	240	13										
		austenitisch	abgeschreckt	180	14										
		austenitisch-ferritisch		230	15										
	Grauguss	perlitisch/ferritisch		180	16										
		perlitisch (martensitisch)		260	17										
K	Gusseisen mit Kugelgrafit	ferritisch		160	18										
		perlitisch		250	19										
	Temperguss	ferritisch		130	20										
		perlitisch nicht aushärtbar		230	21										
	Aluminium-Knetlegierungen	aushärtbar	ausgehärtet	60 100	22										
		≤ 12 % Si, nicht aushärtbar	ausgenartet	75	24										
	Aluminium-Gusslegierungen	≤ 12 % Si, aushärtbar	ausgehärtet	90	25										
N	Aluminum-Gussiegierungen	> 12 % Si, nicht aushärtbar	ausgenartet	130	26										
		Automatenlegierungen, PB > 1	%	110	27										
	Kupfer und Kupferlegierungen	CuZn, CuSnZn	,,	90	28										
	(Bronze/Messing)	CuSn, bleifreies Kupfer und Elekt	rolytkunfer	100	29										
		easily blemeles hapter and Elekt	geglüht	200	30	70	55	_	80	60	_	60	40	_	
		Fe-Basis	ausgehärtet	280	31	65	45	_	70	50	_	50	30	_	
	Warmfeste Legierungen		geglüht	250	32	65	45	_	70	50	_	50	30	-	
S	J J .	Ni- oder Co-Basis	ausgehärtet	350	33	60	40	_	65	45	-	45	25	-	
			gegossen	320	34	60	40	_	65	45	-	45	25	-	
		Reintitan		R _m 400	35	100	60	-	120	80	-	90	65	-	
	Titanlegierungen	Alpha- + Beta-Legierungen	ausgehärtet	R _m 1050	36	80	40	-	100	60	-	80	45	-	
			gehärtet und angelassen	55 HRC	37										
	Gehärteter Stahl		gehärtet und angelassen	60 HRC	38										
Н	Hartguss		gegossen	400	39										
	Gehärtetes Gusseisen		gehärtet und angelassen	55 HRC	40										
		Thermoplaste			41										
		Duroplaste			42										
v	Archerent de la constance	Glasfaserverstärkter Kunststoff G	FK		43										
X	Nichtmetallische Werkstoffe	Kohlefaserverstärkter Kunststoff	CFK		44										
		Grafit			45										
		Holz			46										

: Bei den vorgegebenen Schnittdaten handelt es sich um Richtwerte Je nach Anwendungsfall müssen sie individuell angepasst werden.

Werkstoffbeispiele für Zerspanungsgruppen finden Sie auf Seite D11.

										Schnittg	eschwing	digkeit v	[m/min							
HC (CVD)																				
				YNT251D																
Vor	schub [m	nm]	Vor	schub [n	nm]															
0,1	0,3	0,6	0,05	0,1	0,15															
			480	470	320															
			410	400	250															
			310	300	200															
			300	290	180															
			255	245	150															
			380	370	220															
			265	255	160															
			210	200	140															
			195	185	130															
			295	285	180															
			160	150	90															
45	30	25	60	40	-															
35	25	20	55	35	-															
35	25	20	55	35	-															
30	20	20	50	30	-															
30	20	20	50	30	-															
70	50	40	85	55	-															
60	30	20	75	35	-															
													HC	besc	hichtet	es Hart	metall			

unbeschichtetes Hartmetall, Hauptbestandteil (TiC) o. (TiN), Cermet

unbeschichtetes Hartmetall, Hauptbestandteil (WC)

Kubisch-kristallines Bornitrid mit niedrigem Bornitridgehalt

Kubisch-kristallines Bornitrid mit hohem Bornitridgehalt

CN

Si₃N₄ Keramik Mischkeramik

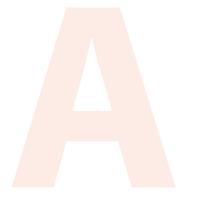
beschichtetes Cermet

CBN mit Beschichtung

Schneidkeramik beschichtet Schneidkeramik, Hauptbestandteil Aluminiumoxid (Al₂O₃), verstärkt

Polykristalliner Diamant

Modulares Stechsystem


Spanleitstufe HG

Systemcode – Wendeschneidplatten A28

PANGU Sorte PG1110 A29
PANGU Sorte PG1120 A30
zGroove Compact A31–A35

Schnittdatenempfehlung A38–A40

A36-A37

A

Dreher

B

Fräsen

C

bonren

D

Technische Information

Ε

ndex

B

Code

02

03

04

80

Technische Information

E

ZP	G	D	04	04	– M	G
1	2	3	4	5	6	7

	Anwendung
Code	Beschreibung
ZP	Abstechen
ZT	Einstechen und Drehen
ZR	Formdrehen

	Plattensitzgröße [mm]								
	Stechbreite								
Code Beschreibung									
В	2,0								
E	2,5								
F	3,0								
G	4,0								
Н	5,0								
K	6,0								
L	L 8,0								

2

Anzahl der Schneiden					
Code	Beschreibung				
S	Single				
D	Double				
	3				

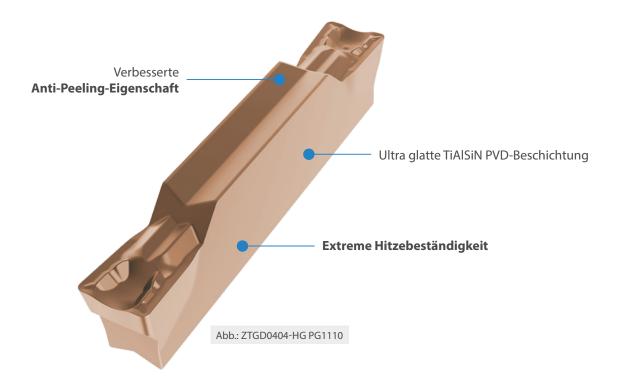

	Plattendicke S [mm]							
	S							
Code	S							
02	2,0							
025	2,5							
03	3,0							
04	4,0							
05	5,0							
06	6,0							
08	8,0							

Eckenradius r [mm] 0,2 0,3 0,4 0,8

Toleranzklasse [mm] Beschreibung Code М ±0,13 Ε ±0,025 ±0,025 Н 6

	Spanbrecher
Code	Beschreibung
G	Allgemeiner Spanbrecher
F	Sonder-Spanbrecher
М	Gerade Kante
	7

5


PANGU

Sorte PG1110

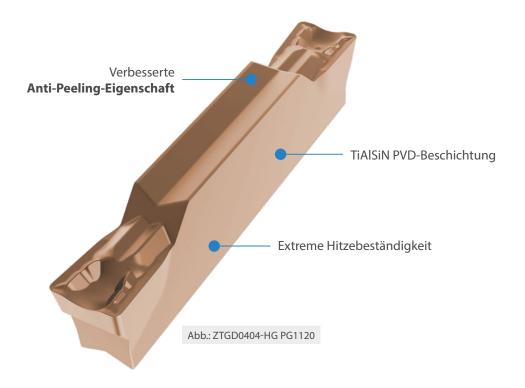
Höchste Verschleißbeständigkeit bei anspruchsvollen Werkstoffen

IHRE VORTEILE

- Thermisch stabile TiAlSiN-Beschichtungstechnologie mit verbesserter Haftungseigenschaft und extrem glatter Schichtoberfläche
- Längere Standzeiten dank harter Substratbasis
- Ideal geeignet für die **Serienfertigung** unter gleichmäßigen Schnittbedingungen

Zum Produktlaunch verfügbare Artikel mit der neuen Sorte PG1110:

Artikel	Lager
ZTBD02002-HG PG1110	•
ZTED02503-HG PG1110	•
ZTFD0303-HG PG1110	•
ZTGD0402-HG PG1110	•
ZTGD0404-HG PG1110	•
ZTHD0504-HG PG1110	•
ZTKD0608-HG PG1110	•



Sorte PG1120

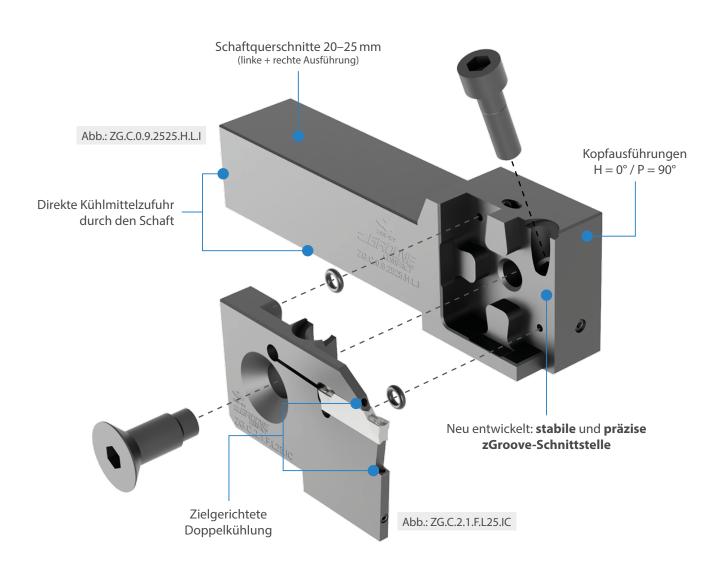
Höchste Prozesssicherheit bei wechselnden Schnittbedingungen

IHRE VORTEILE

- Besonders geeignet für die Bearbeitung von legiertem Stahl, nichtrostendem Stahl und schwer zerspanbaren Werkstoffen
- Für Einstech- und Stechdrehanwendungen mit hoher thermischer und mechanischer Belastung
- Temperaturbeständige TiAlSiN-Beschichtung mit extrem glatter Schichtoberfläche und optimierter Haftungseigenschaft
- Hohe Bruchzähigkeit reduziert Schneidkantenausbrüche

Zum Produktlaunch verfügbare Artikel mit der neuen Sorte PG1120:

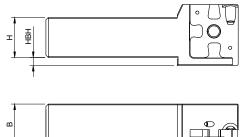
Artikel	Lager
ZTBD02002-HG PG1120	•
ZTED02503-HG PG1120	•
ZTFD0303-HG PG1120	•
ZTGD0402-HG PG1120	•
ZTGD0404-HG PG1120	•
ZTHD0504-HG PG1120	•
ZTKD0608-HG PG1120	•



Kompaktes Design und einfaches Handling

IHRE VORTEILE

- Neu entwickelte zGroove-Schnittstelle für einfaches und präzises Wechseln aller Komponenten
- Hervorragende Spanabfuhr und Minimierung der Bearbeitungstemperatur durch zielgerichtete Doppelkühlung
- **Hohe Maschinenkompatibilität** durch kompakte Bauform
- Stabile Ausführung für alle Anwendungen im Ein- und Abstechen sowie Stechdrehen



Ε

zGroove Compact Schafthalter, $H = 0^{\circ}$

Linksausführung

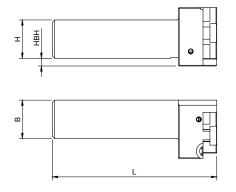
Linke Ausführung

	*	* Lagor		Abmessur	ngen [mm]	Primärkassette	
Artikel		Lager	Н	В	L	НВН	Primarkassette
ZG.C.0.9.2020.H.L.I	*	•	20	20	108	10	ZG.C.2.*.*.L**.IC
ZG.C.0.9.2525.H.L.I	*	•	25	25	120	5	ZG.C.2.*.*.L**.IC

Rechte Ausführung

	*	Lager	Abmessungen [mm]				Primärkassette
Artikel			Н	В	L	HBH	riiiiaikassette
ZG.C.0.9.2020.H.R.I	*	•	20	20	108	10	ZG.C.2.*.*.R**.IC
ZG.C.0.9.2525.H.R.I	*	•	25	25	120	5	ZG.C.2.*.*.R**.IC

Ersatzteile


		Artikel	Lager
-	Schraube (Primärkassette)	ZG.C.2.M8*16	•
	Schraube (WSP)	GB70-85-M6*20	•

zGroove Compact Schafthalter, $P = 90^{\circ}$

Linksausführung

Linke Ausführung

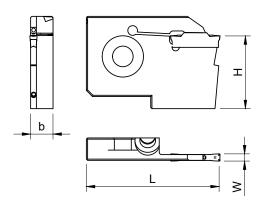
	*	Lagar		Abmessur	ngen [mm]		Primärkassette
Artikel		Lager	Н	В	L	HBH	rimarkassette
ZG.C.0.9.2020.P.LR.I	*	•	20	20	90	10	ZG.C.2.*.*.R**.IC
ZG.C.0.9.2525.P.LR.I	*	•	25	25	107	5	ZG.C.2.*.*.R**.IC

[•] Ab Lager o Auf Anfrage

Rechte Ausführung

	*	Lagar		Abmessu	ngen [mm]		Primärkassette
Artikel		Lager	Н	В	L	HBH	Primarkassette
ZG.C.0.9.2020.P.RL.I	*	•	20	20	90	10	ZG.C.2.*.*.L**.IC
ZG.C.0.9.2525.P.RL.I	*	•	25	25	107	5	ZG.C.2.*.*.L**.IC

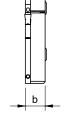
[•] Ab Lager o Auf Anfrage

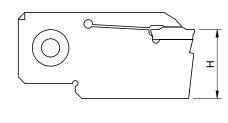

Ersatzte	ile		
		Artikel	Lager
0	Schraube (Primärkassette)	ZG.C.2.M8*16	•
	Schraube (WSP)	GB70-85-M6*20	•

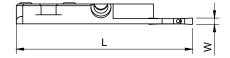
zGroove Compact Primärkassete (Ein- und Abstechen/Stechdrehen)

Linksausführung

Artikel		Lag	jer		Abmessungen [mm]					
	*	R	L	W	Н	a _r max.	L	b		
ZG.C.2.1.B.L/R10.IC	*	•	•	2.0	30	10	45	9	Z*BD**	
ZG.C.2.1.E.L/R15.IC	*	•	•	2.5	30	15	50	9	Z*ED**	
ZG.C.2.1.F.L/R15.IC	*	•	•	3.0	30	15	55	9	Z*FD**	
ZG.C.2.1.F.L/R25.IC	*	•	•	3.0	30	25	55	9	Z*FD**	
ZG.C.2.1.G.L/R20.IC	*	•	•	4.0	30	20	55	9	Z*GD**	
ZG.C.2.1.H.L/R25.IC	*	•	•	5.0	30	25	55	9	Z*HD**	
ZG.C.2.1.K.L/R25.IC	*	•	•	6.0	30	25	55	9	Z*KD**	
ZG.C.2.1.L.L/R30.IC	*	•	•	8.0	30	30	55	9	Z*LD**	


Finden Sie alle kompatiblen Stecheinsätze auf unserer Webseite.


Auch kompatibel mit unserer neuen Spanleitstufe HG (S. A36)


Ersatztei	le		
		Artikel	Lager
0	Dichtung (Primärkassette)	ZG.C.S.3*1.5	•

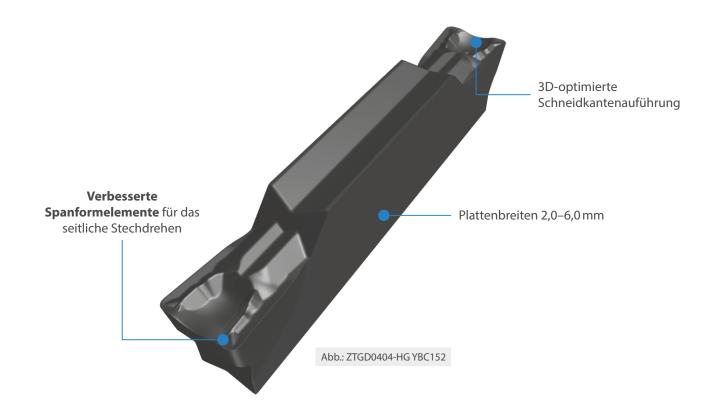
Linksausführung

		La	ger	Abmessungen [mm]					WSP
Artikel	R	L	W	Н	a _r max.	L	b	4	
ZG.C.2.2.E.L/R42.IC	*	•	•	2.5	30	21	55	9	Z*ED**
ZG.C.2.2.F.L/R65.IC	*	•	•	3.0	30	32,5	68	9	Z*FD**
ZG.C.2.2.F.L/R80.IC	*	•	•	3.0	30	40	71	9	Z*FD**

Finden Sie alle kompatiblen Stecheinsätze auf unserer Webseite.

Auch kompatibel mit unserer neuen Spanleitstufe HG (S. A36)

Ersatztei	ile		
		Artikel	Lager
0	Dichtung (Primärkassette)	ZG.C.S.3*1.5	•



Spanleitstufe HG

Speziell für zähe und weiche Werkstoffe

IHRE VORTEILE

- Geringere Schnittkräfte durch positive Geometrie und scharfe Schneidkantengestaltung
- Optimal geeignet für weiche und duktile Werkstoffe
- **Flexibel** in jeder Anwendung (Einstechen/Abstechen/Stechdrehen)
- Geringerer Verschleiß durch minimierten Oberflächenkontakt
- Die Geometrie erzeugt bei der Bearbeitung einen praktisch ebenen Nutgrund

Spanbrecher	Anwendung	Р	М	K	N	S	Н	Vorschub	Schneidkantenausführung
ZT****- HG	Ein- und Abstechen			~		J	,	f [mm/r] 0.5 0.4 0.3	18° 0.05
Stechdrehen	Stechdrehen 😺					~		0.2 0.1 0 S [mm]	S = 4 mm
 Sehr geeignet 	✓ Geeignet							2 2.5 3 4 5 6 8	Ein- und Abstech
									Stechdrehen

- Gute Bearbeitungsbedingungen
- Normale Bearbeitungsbedingungen
- Ungünstige Bearbeitungsbedingungen

		Stech-V	WSP (do	ppelseiti	g)				HC ¹ (CVD)	HC ¹ (PVD)	HW
La _{max} S									0	○ 🗱 🕄	
	max S									₩ €	
				K	0						
				R				N			
		*		s				S		<u>○</u> ∰ €3	
			2 Schnei	den				Н		<u> </u>	
	ISO	S ±0.1	R±0.1	La _{max}	L	f ₁	f ₂	ар	YBC152	PG1110 PG1120 YBG205H	
	ZTBD02002-HG	2.0	0.2	13	16	0.04-0.12	0.05-0.15	0.30-1.00		• • •	
	ZTED02503-HG	2.5	0.3	17	20	0.04-0.16	0.06-0.18	0.40-1.50		• • •	
	ZTFD0303-HG	3.0	0.3	17	20	0.05-0.20	0.10-0.23	0.40-2.00	•	• • •	
4	ZTGD0402-HG	4.0	0.2	22	25	0.08-0.25	0.12-0.28	0.30-3.00		• • •	
	ZTGD0404-HG	4.0	0.4	22	25	0.08-0.25	0.15-0.30	0.50-3.00	•	• • •	
	ZTHD0504-HG	5.0	0.4	22	25	0.10-0.28	0.18-0.35	0.50-3.50	•	• • •	
	ZTKD0608-HG	6.0	0.8	22	25	0.12-0.30	0.20-0.45	0.90-4.00	•	• • •	

• Ab Lager o Auf Anfrage

WSP zum Ein- und Abstechen

HC¹ Beschichtetes Hartmetall HW Unbeschichtetes Hartmetall

- f₁ Einstechen/Abstechen
- f, Stechdrehen
- ap Seitliches Stechdrehen

Dreh-Stechplatten

					e C		Schnittgeschwing	diakeit v. [m/min]		
					Jrupp	HC (CVD)		PVD)	
	Werkstoffgruppe	Zusammensetzung/Gefüg	ge/Wärmebehandlung	Brinell- Härte HB	Zerspanungsgruppe	YBC152	YBC252	YBG102	YBG105	
		ca. 0,15 % C	geglüht	125	1		190			
		ca. 0,45 % C	geglüht	190	2		175			
	Unlegierter Stahl	ca. 0,45 % C	vergütet	250	3		145			
		ca. 0,75 % C	geglüht	270	4		140			
		ca. 0,75 % C	vergütet	300	5		135			
Р			geglüht	180	6		170			
			vergütet	275	7		125			
	Niedriglegierter Stahl		vergütet	300	8		115			
			vergütet	350	9		105			
	Hochlegierter Stahl und hoch-		geglüht	200	10		125			
	legierter Werkzeugstahl		gehärtet und angelassen	325	11		95			
		ferritisch/martensitisch	geglüht	200	12		165	165	170	
		martensitisch	vergütet	240	13		135	135	140	
M	Nichtrostender Stahl	austenitisch	abgeschreckt	180	14		155	155	160	
		austenitisch-ferritisch		230	15		135	135	140	
		perlitisch/ferritisch		180	16		240			
	Grauguss	perlitisch (martensitisch)		260	17		185			
		ferritisch		160	18		220			
K	Gusseisen mit Kugelgrafit	perlitisch		250	19		165			
		ferritisch		130	20		175			
	Temperguss	perlitisch		230	21		165			
		nicht aushärtbar		60	22					
	Aluminium-Knetlegierungen	aushärtbar	ausgehärtet	100	23					
		≤ 12 % Si, nicht aushärtbar		75	24					
	Aluminium-Gusslegierungen	≤ 12 % Si, aushärtbar	ausgehärtet	90	25					
N		> 12 % Si, nicht aushärtbar		130	26					
		Automatenlegierungen, PB > 1	%	110	27					
	Kupfer und Kupferlegierungen (Bronze/Messing)	CuZn, CuSnZn	90	28						
	(Bronze/Messing)	CuSn, bleifreies Kupfer und Elekt	trolytkupfer	100	29					
			geglüht	200	30			95	100	
		Fe-Basis	ausgehärtet	280	31			50	50	
	Warmfeste Legierungen		geglüht	250	32			80	80	
S		Ni- oder Co-Basis	ausgehärtet	350	33			70	70	
			gegossen	320	34			70	70	
		Reintitan		R _m 400	35			145	150	
	Titanlegierungen	Alpha- + Beta-Legierungen	ausgehärtet	R _m 1050	36			50	50	
			gehärtet und angelassen	55 HRC	37					
	Gehärteter Stahl		gehärtet und angelassen	60 HRC	38					
Н	Hartguss		gegossen	400	39					
	Gehärtetes Gusseisen		gehärtet und angelassen	55 HRC	40					
		Thermoplaste			41					
		Duroplaste			42					
V	Articular to the second	Glasfaserverstärkter Kunststoff G	5FK		43					
X	Nichtmetallische Werkstoffe	Kohlefaserverstärkter Kunststoff	CFK		44					
^										
A		Grafit			45					

Hinweise: Bei den vorgegebenen Schnittdaten handelt es sich um Richtwerte, welche unter Idealbedingungen ermittelt wurden. Je nach Anwendungsfall müssen sie individuell angepasst werden. Werkstoffbeispiele für Zerspanungsgruppen finden Sie auf Seite D11.

ē
ے
ē
\Box

B

Fräsen

C

Bohren

D

Technische Information

Ε

dex

					Schnittgesch	windigkeit v _c [m/mi					
			HC (PVD)			н	W			
	YB9320	YBG202	YBG205(H)	YBG302	PG1110	PG1120	YD101	YD201			
	190	190	190	185		205					
	175	175	175	170		189					
	145	145	145	140		157					
	140	140	140	135		151					
	135	135	135	130		146					
	170	170	170	165		184					
	125	125	125	125		135					
	115	115	115	115		124					
	105	105	105	105		113					
	125	125	125	125		135					
	95	95	95	95		103					
	165	165	165	160	190	178					
	135	135	135	130	155	146					
	155	155	155	150	178	167					
	135	135	135	130	155	146					
	240	240	240	235							
	185	185	185	180							
·	220	220	220	215							
	165	165	165	160							
	175	175	175	170							
	165	165	165	160							
							800	760			
							600	570			
							320	305			
							240	230			
							160	155			
							160	155			
							600	570			
							200	190			
	95	95	95	95	110	100	70	65			
	50	50	50	50	60	55	35	35			
	80	80	80	75	95	85	60	60			
	70	70	70	65	80	75	50	50			
	70	70	70	65	80	75	50	50			
	145	145	145	140	170	160	105	100			
	50	50	50	50	60	55	35	35			
								HC beschichte	etes Hartmetall		
									tes naturielaii htetes Hartmetall Haunthestandteil (WC)		

HW unbeschichtetes Hartmetall, Hauptbestandteil (WC)

Wendeschneidplatten-Fräser

ISO-Code – Wendeschneidplatten B42-B43 Systemcode – Fräskörper B44-B45 PANGU Sorte PG8020 B46 PANGU Sorte PG8030 B47 Eckfrässystem EMP08 B48-B53 Eckfrässystem EMP10 B54-B59 Hochvorschubfrässystem XMR13 B60-B63 Schnittdatenempfehlungen B64-B72

A

Drehen

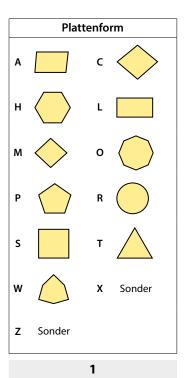
В

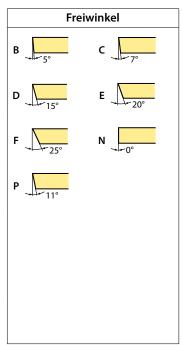
Fräsen

C

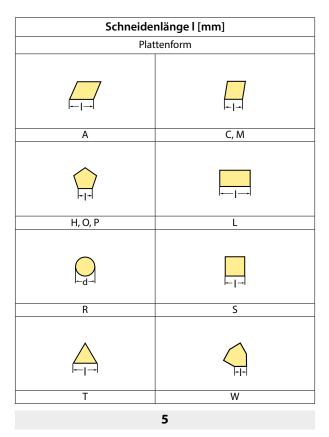
Bohren

ח


Technische Information


Ε

ydex



2

	То	leranzklasse			
-1.	m C+	† †	-m-		
Code	I.C [mm]	m [mm]	S [mm]		
Α	±0,025	±0,005	±0,025		
C	±0,025	±0,013	±0,025		
E	±0,025	±0,025	±0,025		
F	±0,013	±0,005	±0,025		
G	±0,025	±0,025	±0,130		
Н	±0,013	±0,013	±0,025		
J	±0,05-0,13	±0,005	±0,025		
K	±0,05-0,13	±0,013	±0,025		
L	±0,05-0,13	±0,025	±0,025		
М	±0,05-0,13	±0,08-0,18	±0,130		
N	±0,05-0,13	±0,08-0,18	±0,025		
U	±0,08-0,25	±0,13-0,38	±0,130		
		2			

	Befestigungsmerkmale (metrisch)									
		Plattenforn	n							
A		В	>65°							
С	> 65°	F								
G		н	> 65°							
J	> 65°	М								
N		Q	≤ 65°							
R		т	≤ 65°							
U	≤ 65°	w	≤ 65°							
х	Sonder									
		4								

Plattendicke S [mm]									
	s	\$ \$							
Code	S	Code	S						
00	0,79	05	5,56						
T0	0,99	T5	5,95						
01	1,59	06	6,35						
T1	1,98	T6	6,75						
02	2,38	07	7,94						
T2	2,58	09	9,52						
03	3,18	T9	9,72						
Т3	3,97	11	11,11						
04	4,76	12	12,70						
T4	4,96								
	(5							

	Winkel									
	Kr	an t								
Code	Kr	Code	αn							
Α	45°	Α	3°							
D	60°	В	5°							
E	75°	С	7°							
F	85°	D	15°							
P	90°	E	20°							
Z	Sonder	F	25°							
		G	30°							
		N	0°							
		P	11°							
		Z	Sonder							
		_								

	Fase											
Code	Ausführung	Code	Winkel	Code	Breite [mm]	Code	Position					
F		0	5°	0	0,10	.,						
		1	10°	1	0,15	К						
E		2	15°	2	0,20							
Т		3	20°	3	0,25	P						
S		4	25°	4	0,30							
		5	30°	5	0,35							
				6	0,40	W						
				7	0,45							
						_						

Schnittrichtung							
Code	Beschreibung						
R	Rechts						
L	Links						
N	Rechts und links						
	Q						

Spanbrecher
10

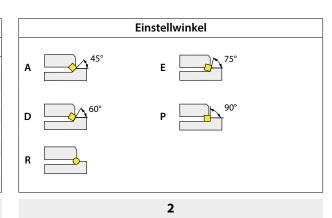
Jrehen

В

Fräsen

C

Bohren

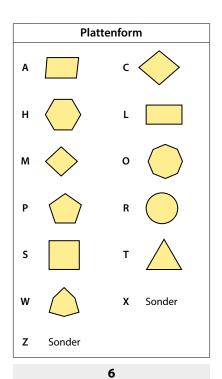

Information

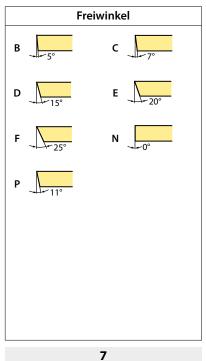
Ε

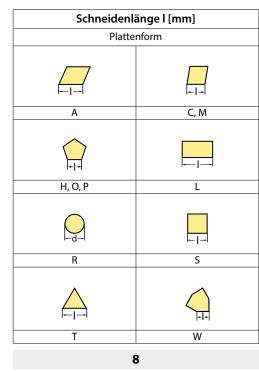
ndex

FM	Α	12	050	– A22	0	_	N	06	_	04	(L)	(AC)
1	2	3	4	5	6		7	8		9	10	11

Fräsertyp					
Code	Beschreibung				
ВМ	Formfräser				
CM	Fasenfräser				
EM	Eckfräser				
FM	Planfräser				
НМ	Walzenstirnfräser				
SM	Scheibenfräser				
TM	T-Nutenfräser				
XM	Sonder				
	1				




	Nenndurchmesser [mm]						
Code	Beschreibung						
025	25						
050	50						
160	160						
315	315						


	Ausführung und Größe von Werkzeugaufnahmen									
Code	Ausführung	Code	Ausführung							
A	Nenndurchmesser Ø50 – 80 mm Ø 22, 27 40 50 63	В	Nenndurchmesser Ø100 – 160 mm Ø 27, 32, 40 50 63 70							
c	Nenndurchmesser Ø200 – 250 mm 101,6 Ø 60 0200,250 0200,250	D	038,45,56 Ø100,125,160 Nenndurchmesser Ø315 mm 177,8 101,6 Ø60 70 80							
G	Zylinderschaft	ХP	Weldon-Schaft							
K	Bohrung mit Quermitnahme									
		5								

Bezüglich der Befestigung beachten Sie bitte die Angaben des Werkzeugaufnahmenherstellers.

Kühlung							
Code	Beschreibung						
С	Innenkühlung						
AC	Luftkühlung						
11							

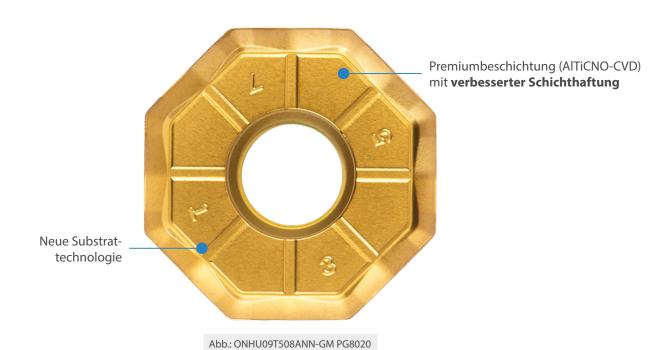
Werkzeuge mit B-Kupplung und innerer Kühlmittelzufuhr benötigen folgende Ersatzteile:

Kühlmittelspannschraube

Kühlmittelscheibe

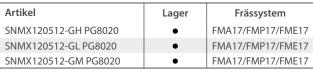
Ersatzteile (B-Kupplung mit innerer Kühlmittelzufuhr)								
		B27	B32	B40	B40			
	Ø	80	100	125	160			
-	Kühlmittelspannschraube	LDB27C	LDB32C	LDB40C	LDB40C			
0	Kühlmittelscheibe	B27-002-CP	B32-002-CP	B40-002-CP	B40-003-CP			

 $Beim\,Kauf\,eines\,Werkzeugs\,mit\,innerer\,K\ddot{u}hlmittelzufuhr\,und\,B-Kupplung\,sind\,diese\,Ersatzteile\,im\,Lieferumfang\,enthalten.$


Sorte PG8020

Hochleistungsschlichten von hitzebeständigem Stahlguss

IHRE VORTEILE


- Hochleistungs-Schlichtfrässorte für schwer zerspanbare Werkstoffe wie hitzebeständigem Stahlguss
- Geringerer Verschleiß und höhere Werkzeugstandzeit
- Hohe mechanische Belastbarkeit
- Thermisch extrem stabile Beschichtung

Zum Produktlaunch verfügbare Artikel mit der neuen Sorte PG8020:

Artikel	Lager	Frässystem
LNKT120624PNR-GM PG8020	•	EMP09
LNKT120632PNR-GM PG8020	•	EMP09
ONMU060408-GH PG8020	•	FMA12
ONMU060408-GM PG8020	•	FMA12
ONMU09T512-GH PG8020	•	FMA12
ONMU09T512-GM PG8020	•	FMA12
SDMT06T208-DM PG8020	•	XMR01
SDMT06T208-NM PG8020	•	XMR01
SDMT09T312-DM PG8020	•	XMR01
SDMT09T312-NM PG8020	•	XMR01
SDMT120412-DM PG8020	•	XMR01
SDMT120412-NM PG8020	•	XMR01
SNGX1205PNN-GH PG8020	•	FMP17
SNGX1205PNN-GL PG8020	•	FMP17
SNGX1205PNN-GM PG8020	•	FMP17

• Ab Lager O Auf Anfrage

Ab Lager O Auf Anfrage

Sorte PG8030

Hocheffiziente Frässorte für HRSA-Werkstoffe

IHRE VORTEILE

- Hocheffiziente Frässorte für schwer zerspanbare Werkstoffe
- Optimal für Materialien wie hitzebeständigen Stahlguss und Duplex-Stähle
- Hitzeresistente Anti-Peeling-Beschichtung auch unter thermischer Wechsellast
- Maximale Prozessstabilität dank erhöhter Schlag- und Verschleißfestigkeit

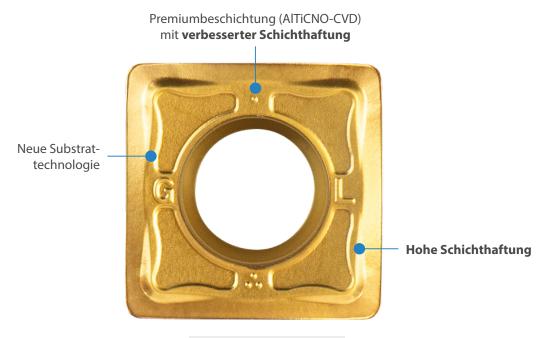


Abb.: SNGX1205PNN-GL PG8030

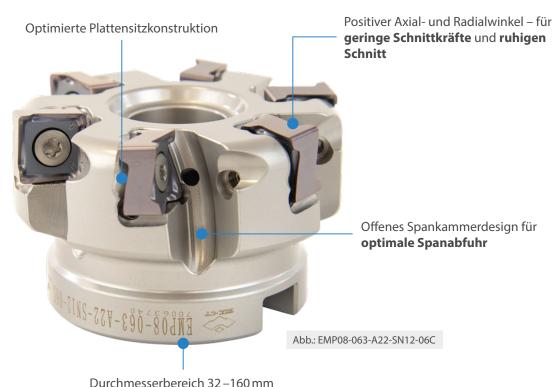
Zum Produktlaunch verfügbare Artikel mit der neuen Sorte PG8030:

Artikel	Lager	Frässystem
ONMU060408-GH PG8030	•	FMA12
ONMU060408-GM PG8030	•	FMA12
ONMU09T512-GH PG8030	•	FMA12
ONMU09T512-GM PG8030	•	FMA12
SDMT06T208-DM PG8030	•	XMR01
SDMT06T208-NM PG8030	•	XMR01
SDMT09T312-DM PG8030	•	XMR01
SDMT09T312-NM PG8030	•	XMR01
SDMT120412-DM PG8030	•	XMR01
SDMT120412-NM PG8030	•	XMR01
SNGX1205PNN-GH PG8030	•	FMP17
SNGX1205PNN-GL PG8030	•	FMP17
SNGX1205PNN-GM PG8030	•	FMP17

• Ab Lager O Auf Anfrage

Artikel	Lager	Frässystem
SNMX120512-GH PG8030	•	FMA17/FMP17/FME17
SNMX120512-GL PG8030	•	FMA17/FMP17/FME17
SNMX120512-GM PG8030	•	FMA17/FMP17/FME17

• Ab Lager O Auf Anfrage



Eckfrässystem EMP08

90° Schulternfräsen – effizient und prozessicher

IHRE VORTEILE

- Doppelseitige Wendeschneidplatten mit 8 Schneidkanten für höchste Wirtschaftlichkeit
- Echte 90°-Bearbeitung dank komplex geformter Hauptschneidkante
- Prozesssicheres Arbeiten auch unter anspruchsvollen Arbeitsbedingungen durch optimierte
 Plattensitzkonstruktion
- Universell einsetzbar für größere Bauteile mit Fokus auf Oberflächengüte, Schnittkraftreduktion und Prozessstabilität – ideal für Serienfertigung

Die **maximale Schnitttiefe** bei 90°-Schulterbearbeitungen mit EMP08-SNGY12** beträgt **8,3 mm**. Für **tiefere Zustellungen** ist ein **radialer Versatz** von mindestens **0,4 mm** erforderlich, um eine saubere Schulterausbildung sicherzustellen.

WSP-Sorten

PANGU

PG8020

CVD CVD \$10-\$20 P20-P40 M15-M35 M15-M35

YBM253

YBD152

CVD K10 – K25 YBG205H PVD P10-P30

M20-M40

PVD P10 – P30 M20 – M40

YB9320

AR2303

PVD S20 – S30 M20 – M40

Spanbrecher

SN*Y-GL

Schlichtbearbeitung

SN*Y-GM

Allgemeine Bearbeitung

SN*Y-GH

Schruppbearbeitung

Komplexer Spanformer für kontrollierte Spanabfuhr schützt ungenutzte Schneidkanten

Wiper mit großem Radius für exzellente Oberflächengüten

Geringe Schnittkräfte durch positives Schneidkantendesign

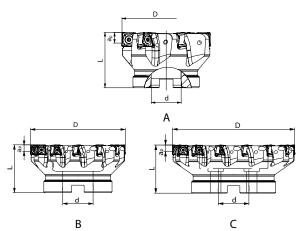


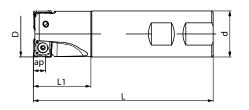
Abb.: SNGY12T508PNR-GM YBG205H

Eckfräser

EMP08 Kr: 90°

						_				
	*	Lager		Abme	essungen	[mm]				WSP
Artikel			ØD	ØD ₁	ød	L ₁	a _{p max}	Zähne	kg	
EMP08-050-A22-SN12-04C	*	•	50	40	22	40	8	4	0,25	
EMP08-050-A22-SN12-05C	*	•	50	40	22	40	8	5	0,24	_
EMP08-063-A22-SN12-05C	*	•	63	50	22	50	8	5	0,46	
EMP08-063-A22-SN12-06C	*	•	63	50	22	50	8	6	0,48	
EMP08-080-A27-SN12-06C	*	•	80	60	27	50	8	6	1,01	
EMP08-080-A27-SN12-08C	*	•	80	60	27	50	8	8	1,01	_
EMP08-100-B32-SN12-08C	*	•	100	70	32	50	8	8	1,16	CNCV12TE00DND**
EMP08-100-B32-SN12-10C	*	•	100	70	32	50	8	10	1,11	SNGY12T508PNR**
EMP08-125-B40-SN12-10C	*	•	125	90	40	63	8	10	2,52	
EMP08-125-B40-SN12-12C	*	•	125	90	40	63	8	12	2,45	
EMP08-160-C40-SN12-12		•	160	110	40	63	8	12	4,14	
EMP08-160-C40-SN12-14		•	160	110	40	63	8	14	4,07	
EMP08-200-C60-SN12-14		•	200	137	60	63	8	14	6,04	
EMP08-200-C60-SN12-16		•	200	137	60	63	8	16	6,03	

- Ab Lager
- $\circ \ {\rm Auf} \ {\rm Anfrage}$
- * Mit Innenkühlung


	Ersatzteile	
	WSP	SNGY12T5
	ØD	32–200
	Schraube	IRM4x10 (3,4Nm)
>	Schlüssel (WSP)	WT15IP/WT15IS

				Abme	ssungen	[mm]				WSP
Artikel	*	Lager	ØD	ød	L ₁	L	a _{p max}	Zähne	kg	
EMP08-032-XP32-SN12-02C	*	0	32	32	40	125	8	2	0,617	
EMP08-040-XP32-SN12-03C	*	•	40	32	45	125	8	3	0,678	SNGY12T508PNR**
EMP08-040-XP32-SN12-04C	*	•	40	32	45	125	8	4	0,776	

[•] Ab Lager O Auf Anfrage

	Ersatzteile	
	WSP	SNGY12T5
	ØD	32–200
	Schraube	IRM4x10 (3,4Nm)
>	Schlüssel (WSP)	WT15IP/WT15IS

Mit Innenkühlung

Fräs-WSP

Gute Bearbeitungsbedingungen

8

3	Normale Bearbeitungsbedingungen	12 T5	ı
3	Ungünstige Rearbeitungsbedingungen		_

	SNGY L		I.C	S	d			
L	12 T5	8,00	12,70	7,36	4,7			

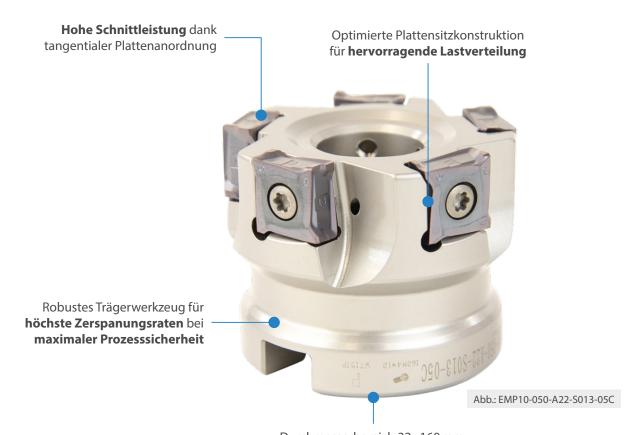
SN** Fräs-WSP			HC1 (CVD)	HC1 (PVD)	HT	HC ²	HW
		Р	€	88			
	М	€ €	888				
	K	€}					
	N						
	S	↔	€\$				
		Н					
ISO	bs	r	PG8020 YBM253 YBD152	YBG205H YB9320 YBS303			
SNGY12T508PNR-GL	1,2	0,8	• • •	• • •			
SNGY12T508PNR-GM	1,2	0,8		• •			
SNGY12T508PNR-GH	1,2	0,8		• •			

• Ab Lager O Auf Anfrage HC¹ Beschichtetes Hartmetall

Unbeschichtetes Cermet

HC² Beschichtetes Cermet

HW Unbeschichtetes Hartmetall



Eckfrässystem EMP10

Maximale Vorschubleistung für Ihre Fertigung

IHRE VORTEILE

- Tangential montierte Wendeschneidplatten mit 8 Schneidkanten für **maximale Wirtschaftlichkeit** und **Schnittkraftaufnahme**
- Echte 90°-Schulterbearbeitung dank komplex geformter Hauptschneide
- Hohe Vorschubleistung pro Zahn dank tangentialer Plattenmontage
- Leichtes Schnittverhalten ideal bei unterbrochenem Schnitt und variablen Schnittbedingungen
- **Höchste Prozesssicherheit** mit optimierter Plattensitzgeometrie
- Universell einsetzbar für Stahl, Gusseisen, Edelstahl und schwer zerspanbare Werkstoffe perfekt für wirtschaftliche Serienbearbeitung

WSP-Sorten

YBM253

CVD P20 – P40 M15 – M35

YBG205H

PVD P10 – P30 M20 – M40

YB9320

PVD P10–P30 M20–M40

Spanbrecher

SOKX-GM

Allgemeine Bearbeitung

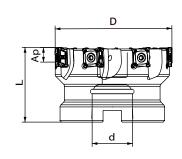
Duales Spanwinkel-Design für weichen Schnitt bei gleichzeitig hoher Schneidkantenstabilität

Komplex geformte Hauptschneide ermöglicht hochpräzise 90°-Schulterbearbeitung

Abb.: SOKX130608PNR-GM YGB205H

Ε

Eckfräser


EMP10 Kr: 90°

				Abmessur	ngen [mm]				WSP
Article	*	Stock	ØD	ød	L,	a _{p max}	Teeth	kg	-
EMP10-040-A16-SO13-03C	*	0	40	16	40	8	3	0,25	
EMP10-040-A16-SO13-04C	*	•	40	16	40	8	4	0,21	
EMP10-040-A16-SO13-05C	*	0	40	16	40	8	5	0,20	
EMP10-050-A22-SO13-04C	*	•	50	22	40	8	4	0,35	
EMP10-050-A22-SO13-05C	*	•	50	22	40	8	5	0,32	
EMP10-050-A22-SO13-06C	*	•	50	22	40	8	6	0,32	
EMP10-063-A22-SO13-06C	*	•	63	22	40	8	6	0,56	
EMP10-063-A22-SO13-07C	*	0	63	22	40	8	7	0,56	
EMP10-063-A22-SO13-08C	*	0	63	22	40	8	8	0,57	· COKV120C00DND CM
EMP10-080-A27-SO13-06C	*	0	80	27	50	8	6	1,17	SOKX130608PNR-GM
EMP10-080-A27-SO13-07C	*	•	80	27	50	8	7	1,19	
EMP10-080-A27-SO13-09C	*	0	80	27	50	8	9	1,18	_
EMP10-100-B32-SO13-08C	*	0	100	32	50	8	8	1,64	
EMP10-100-B32-SO13-12C	*	0	100	32	50	8	12	1,66	_
EMP10-125-B40-SO13-10C	*	0	125	40	63	8	10	3,21	
EMP10-125-B40-SO13-15C	*	0	125	40	63	8	15	3,23	-
EMP10-160-B40-SO13-12C	*	0	160	40	63	8	12	6,2	
EMP10-160-B40-SO13-18C	*	0	160	40	63	8	18	6,21	

[•] Ab Lager

	Ersatzteile		
	WSP	SOKX1306	
	ØD	40–160	
	Schraube	l60M4*12 (3,4Nm)	
>	Schlüssel (WSP)	WT15IS	1

o Auf Anfrage

^{*} Mit Innenkühlung

SOKX

Bohren

 \bigcirc Gute Bearbeitungsbedingungen

8 Normale Bearbeitungsbedingungen

13 06 Ungünstige Bearbeitungsbedingungen

	SO** Fräs-WSP			HC1 (CVD)	HC1 (PVD)	HT	HC ²	HW
	S		Р	€	€			
		М	€	€ €				
- - 133			K					
	bs	bs	S		€			
			Н					
	ISO	bs	r	YBM253	YBG205H YB9320			
3 8	SOKX130608PNR-GM	1,35	0,8	•	• •			

• Ab Lager o Auf Anfrage

Fräs-WSP

HC¹ Beschichtetes Hartmetall ΗТ **Unbeschichtetes Cermet**

 HC^2 **Beschichtetes Cermet**

I.W

12,70

8,00

S

7,36

d

4,7

Unbeschichtetes Hartmetall

Wendeschneidplatten-Fräser Eckfräser

Notizen	Α
	Drehen
	D
	В
	_
······································	Fräsen
······································	
	C
	Bohren
	D
	υ⊊
	Technische Information
	Tec
	Ε
	X e

Hochvorschubfrässystem XMR13

Für Höchstleistung bei Vorschub und Wirtschaftlichkeit

IHRE VORTEILE

- Doppelseitige Wendeschneidplatten mit 8 Schneidkanten für maximale Wirtschaftlichkeit
- Optimierte 3D-Kontur der Schneide minimiert Schnittkräfte und erhöht die Prozesssicherheit
- Gleichmäßiger Schnittkraftanstieg beim Materialeintritt schont die Schneidkante
- Konstante Schnittkräfte im Eingriff für ruhigen Lauf und prozesssichere Bearbeitung
- Hervorragende Spankontrolle in Stahl, Werkzeugstahl und Gusseisen

WSP-Sorten

YBM253

CVD P20 – P40 M15 – M35

YBC302

CVD P20 – P40

YBG205H

PVD P10 – P30 M20 – M40

YB9320

PVD P10-P30 M20-M40

YBS303

PVD S20 – S30 M20 – M40

Spanbrecher

SNMU-GL

Leicht schneidende Geometrie

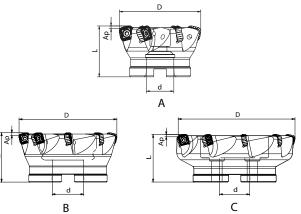
SNMU-GM

Allgemeine Bearbeitung

8 nutzbare Schneiden für maximale Wirtschaftlichkeit

Wipergeometrie für **exzellente Oberfächengüten**

Optimierte 3D-Kontur


Abb.: SNMU130520-GL YBG205H

Hochvorschubfräser

			Abmessungen [mm]							WCD
			A	omessur	igen [m	mj			_	WSP
Artikel 	*		ØD	ød	L	a _{p max}			kg	0
XMR13-050-A22-SN13-04C	*	•	50	22	40	1,9	4	Α	0,5	
XMR13-063-A22-SN13-05C	*	•	63	22	40	1,9	5	Α	0,8	
XMR13-063-A22-SN13-07C	*	•	63	22	40	1,9	7	Α	1,0	
XMR13-080-A27-SN13-06C	*	•	80	27	50	1,9	6	Α	1,0	
XMR13-080-A27-SN13-08C	*	•	80	27	50	1,9	8	Α	1,5	SNMU130520**
XMR13-100-B32-SN13-07C	*	•	100	32	50	1,9	7	В	1,5	
XMR13-100-B32-SN13-10C	*	•	100	32	50	1,9	10	В	2,0	
XMR13-125-B32-SN13-08C	*	•	125	32	63	1,9	8	В	3,0	
XMR13-160-C40-SN13-09	*	•	160	40	63	1,9	9	С	5,0	

- Ab Lager
- O Auf Anfrage Mit Innenkühlung

	Ersatzteile	
	WSP	SNMU1305
	ØD	50-160
Graning.	Schraube	l60M5X13 (3,5Nm)
<i>,</i>	Schlüssel (WSP)	WT20IT

O Gute Bearbeitungsbedingungen

Normale BearbeitungsbedingungenUngünstige Bearbeitungsbedingungen

 SNMU
 L
 I.C
 S
 d

 13 05
 13,50
 13,50
 5,28
 5,7

Fräs-WSP

	SN** Fräs-WSP			HC ¹	(CVD)	HC¹ (PVD)	НТ	HC ²	HW
	ا <u>-</u>	Р	€ €		&					
		М	⇔		⇔ ↔					
		K								
	\- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	N								
	bs		S			₩				
	<u>→ 4 </u>		Н							
	ISO bs					YBG205H YB9320 YBS303				
A LANGE	SNMU130520-GL	1,5	2,0			• • 0				
0	SNMU130520-GM	1,5	2,0	• 0		• 0 •				

• Ab Lager O Auf Anfrage

HC¹ Beschichtetes Hartmetall

HT Unbeschichtetes Cermet

HC² Beschichtetes Cermet

HW Unbeschichtetes Hartmetall

					bbe									
					gru				HC (CVD)				
	Werkstoffgruppe	Zusammensetzung/Gefüg	e/Wärmebehandlung		Zerspanungsgruppe	YBC	302	YBC	401	YBD	152	YBC	252	
					span	a _e ,	/ D	a _e /	/ D	a _e	/ D	a _e	/ D	
					Zer	1/1 3/4	1/5	1/1 3/4	1/5	1/1 3/4	1/5	1/1 3/4	1/5	
		ca. 0,15 % C	geglüht	125	1	245	285	210	245					
		ca. 0,45 % C	geglüht	190	2	210	245	180	210					
	Unlegierter Stahl	ca. 0,45 % C	vergütet	250	3	200	230	170	200					
		ca. 0,75 % C	geglüht	270	4	175	200	150	175					
		ca. 0,75 % C	vergütet	300	5	160	190	140	160					
Ρ			geglüht	180	6	210	245	180	210					
			vergütet	275	7	175	200	150	175					
	Niedriglegierter Stahl		vergütet	300	8	160	190	140	160					
			vergütet	350	9	135	160	120	135					
	Hochlegierter Stahl und		geglüht	200	10	125	145	105	125					
	hochlegierter Werkzeugstahl		gehärtet und angelassen	325	11	90	100	75	90					
		ferritisch/martensitisch	geglüht	200	12									
		martensitisch vergütet		240	13									
M	Nichtrostender Stahl	austenitisch	abgeschreckt	180	14									
		austenitisch-ferritisch		230	15									
		perlitisch/ferritisch		180	16					315	365	270	315	
	Grauguss	perlitisch (martensitisch)		260	17					185	215	160	190	
		ferritisch		160	18					215	250	185	215	
K	Gusseisen mit Kugelgrafit	perlitisch		250	19					145	170	125	145	
		ferritisch		130	20					260	300	225	260	
	Temperguss	perlitisch		230	21					175	205	150	175	
		nicht aushärtbar		60	22					1/3	203	130	1/3	
	Aluminium-Knetlegierungen	aushärtbar	ausaah ärtat											
	≤ 12 % Si, nicht aushärtbar		ausgehärtet	100	23									
			1	75	24									
Ν			ausgehärtet	90	25									
		> 12 % Si, nicht aushärtbar	N/	130	26									
	Kupfer und Kupferlegierungen	Automatenlegierungen, PB > 1	%	110	27									
	(Bronze/Messing)	CuZn, CuSnZn	Lil. 6	90	28									
		CuSn, bleifreies Kupfer und Elekt		100	29									
		Fe-Basis	geglüht	200	30									
			ausgehärtet	280	31									
_	Warmfeste Legierungen		geglüht	250	32									
S		Ni- oder Co-Basis	ausgehärtet	350	33									
			gegossen	320	34									
	Titanlegierungen	Reintitan		R _m 400	35									
		Alpha- + Beta-Legierungen	ausgehärtet	R _m 1050	36									
	Gehärteter Stahl		gehärtet und angelassen	55 HRC	37									
Н			gehärtet und angelassen	60 HRC	38									
••	Hartguss		gegossen	400	39									
	Gehärtetes Gusseisen		gehärtet und angelassen	55 HRC	40									
		Thermoplaste			41									
		Duroplaste			42									
X	Nichtmetallische Werkstoffe	Glasfaserverstärkter Kunststoff G	FK		43									
^	Weiterieranische Weitstolle	Kohlefaserverstärkter Kunststoff	CFK		44									
		Grafit			45									
	Holz													

Je nach Anwendungsfall müssen sie individuell angepasst werden.

3	•	
	•	

Ī		ì	þ
	Ī	í	•
	Ξ	9	

Technische Informationen

1										Schni	ttgeschwi	ndigkeit	v _c [m/mir	n]								
1		HC (CVD)								HC (F	PVD)								Н	W	
14	YBM	253	PG8020	// PANGU	YBG	101	YBG	102	YBG	152	YB9	320	YBG2	05(H)	YBG	252	YBG	302	YD1	101	YD2	01
245 285	a _e /	'D	a _e /	'D	a _e /	'D	a _e /	'D	a _e /	'D	a _e /	D	a _e /	'D	a _e /	D	a _e /	'D	a _e /	'D	a _e /	D
240	1/1 3/4	1/5	1/1 3/4	1/5	1/1 3/4	1/5	1/1 3/4	1/5	1/1 3/4	1/5	1/1 3/4	1/5	1/1 3/4	1/5	1/1 3/4	1/5	1/1 3/4	1/5	1/1 3/4	1/5	1/1 3/4	1/5
200	245	285					255	295	240	280	230	265	220	255	215	250	210	245				
175 200 176	210	245					220	255	205	240	200	230	190	220	185	215	180	210				
160	200	230					205	240	195	225	185	215	180	205	175	200	170	200				
210	175	200					180	210	170	200	165	190	155	180	155	175	150	175				
175 200	160	190					170	195	160	185	150	175	145	170	140	165	140	160				
160 190 190 190 190 190 195 160 185 150 175 145 170 140 165 140 160 160 175 145 170 140 165 140 160 160 175 145 170 140 160 160 145 140 160 175 145 170 140 160 160 175 145 170 140 160 160 175 145	210	245					220	255	205	240	200	230	190	220	185	215	180	210				
160 190 190 190 190 190 195 160 185 150 175 145 170 140 165 140 160 160 175 145 170 140 165 140 160 160 175 145 170 140 160 160 145 140 160 175 145 170 140 160 160 175 145 170 140 160 160 175 145	175	200					180	210	170	200	165	190	155	180	155	175	150	175				
185 160	160	190					170	195	160	185	150	175	145	170	140	165	140	160				
125		160					145		135									135				
90																						
125																						
105			145	165																		
130																						
105 120 120 127 127 128 120 125 105 125 105 120 105 125 295 245 285 240 280 225 275 126																						
	103	120	120	13/																		
1505 1735 1420 1505 1735 1420 1505 1735 1420 1505 1505																						
1225 1420 1430							155	180	145	170	140	160	135	155	130	150	130	150				
Second										_									1205	1390	1040	
					1225	1420													980	1140	850	980
10					540	620													435	500	375	435
170					435	505													350	405	300	350
170 245 180					220	255													180	205	155	180
1					170	195													140	160	120	140
75 86 75 85 70 80 65 75 65 75 60 70 10<					210	245													170	200	150	170
					385	445													310	360	265	310
63 72 60 70 55 65 55 65 50 55 50			75	86			75	85	70	80	65	75	65	75	65	75	60	70				
35 40 35 40 35 40 30 35 30 30 35 30			52	59			50	55	50	55	45	50	45	50	45	50	40	45				
75 86			63	72			60	70	55	65	55	65	50	55	50	55	50	55				
75 86 75 85 70 80 65 75 65 75 60 70 70 75 85 70 80 65 75 65 75 60 70 70 75 85 75 85 70 80 65 75 65 75 65 75 60 70 70 70 70 70 70 70 70 70 70 70 70 70			35	40			35	40	35	40	30	35	30	35	30	35	30	35				
75 86 75 85 70 80 65 75 65 75 60 70 80 65 75 65 75 65 75 60 70 80 80 80 80 80 80 80 80 80 80 80 80 80			75	86			45	50	45	50	40	45	40	45	40	45	40	45				
75 86 75 85 70 80 65 75 65 75 60 70 80 65 75 65 75 65 75 60 70 80 80 80 80 80 80 80 80 80 80 80 80 80			75	86			75	85	70	80	65	75	65	75	65	75	60	70				
MC Backishtate Hartmatell																						
MC Back islatate Hartmatell																						
MC hoshishtate Hartmatell																						
WC hoshishtate Hartmatell																						
WC horshightetes Hartmotell																						
HC hoshishtate Hartmatell																						
LC backishtata Hartmatall																						
LC hookishtoto Hartmotall																						
LC hookishtoto Hartmotall																						
LC backishtate Hartmatall																						
UC hashishtatas Havenatall																						
													ЦС	bessl	ichtoto	Uarte:	nt all					

unbeschichtetes Hartmetall, Hauptbestandteil (TiC) o. (TiN), Cermet

unbeschichtetes Hartmetall, Hauptbestandteil (WC)

Kubisch-kristallines Bornitrid mit niedrigem Bornitridgehalt Kubisch-kristallines Bornitrid mit hohem Bornitridgehalt

CN Si₃N₄ Keramik

Mischkeramik

beschichtetes Cermet

CBN mit Beschichtung Schneidkeramik beschichtet

Schneidkeramik, Hauptbestandteil Aluminiumoxid (Al₂O₃), verstärkt

Polykristalliner Diamant

Wendeschneidplatten-Fräser – Gruppe 7 (XMR01, XMR12, XMR13, XMP01, QCH)

					ədd		Schnitte	geschwin	digkeit v _c	[m/min]		
					grup			HC (CVD)			
	Werkstoffgruppe	Zusammensetzung/Gefüg	ge/Wärmebehandlung		sbun		YBC302			YBD152		
					Zerspanungsgruppe		a _e / D			a _e / D		
					Zer	1/1 3/4	1/5	1/20	1/1 3/4	1/5	1/20	
		ca. 0,15 % C	geglüht	125	1	260	300	390				
		ca. 0,45 % C	geglüht	190	2	225	255	335				
	Unlegierter Stahl	ca. 0,45 % C	vergütet	250	3	210	240	315				
		ca. 0,75 % C	geglüht	270	4	185	210	275				
		ca. 0,75 % C	vergütet	300	5	170	195	255				
Ρ			geglüht	180	6	225	255	335				
			vergütet	275	7	185	210	275				
	Niedriglegierter Stahl		vergütet	300	8	170	195	255				
			vergütet	350	9	145	165	215				
	Hochlegierter Stahl und		geglüht	200	10	130	150	195				
	hochlegierter Werkzeugstahl		gehärtet und angelassen	325	11	95	105	140				
		ferritisch/martensitisch	geglüht	200	12							
		martensitisch	vergütet	240	13							
M	Nichtrostender Stahl	austenitisch	abgeschreckt	180	14							
		austenitisch-ferritisch		230	15							
	_	perlitisch/ferritisch		180	16				335	390	510	
	Grauguss	perlitisch (martensitisch)		260	17				200	230	300	
17		ferritisch		160	18				225	260	340	
K	Gusseisen mit Kugelgrafit	perlitisch		250	19				150	175	230	
	_	ferritisch		130	20				275	320	420	
	Temperguss	perlitisch		230	21				185	215	280	
		nicht aushärtbar		60	22							
	Aluminium-Knetlegierungen	aushärtbar	ausgehärtet	100	23							
		≤ 12 % Si, nicht aushärtbar		75	24							
	Aluminium-Gusslegierungen	≤ 12 % Si, aushärtbar	ausgehärtet	90	25							
N		> 12 % Si, nicht aushärtbar	•	130	26							
		Automatenlegierungen, PB > 1	%	110	27							
	Kupfer und Kupferlegierungen (Bronze/Messing)	CuZn, CuSnZn		90	28							
	(DIOIIZE/MESSING)	CuSn, bleifreies Kupfer und Elekt	rolytkupfer	100	29							
			geglüht	200	30							
		Fe-Basis	ausgehärtet	280	31							
	Warmfeste Legierungen		geglüht	250	32							
S		Ni- oder Co-Basis	ausgehärtet	350	33							
			gegossen	320	34							
		Reintitan		R _m 400	35							
	Titanlegierungen	Alpha- + Beta-Legierungen	ausgehärtet	R _m 1050	36							
	Gehärteter Stahl		gehärtet und angelassen	55 HRC	37							
			gehärtet und angelassen	60 HRC	38							
Н	Hartguss		gegossen	400	39							
	Gehärtetes Gusseisen		gehärtet und angelassen	55 HRC	40							
		Thermoplaste			41							
		Duroplaste			42							
V	N. 1	Glasfaserverstärkter Kunststoff G	FK .		43							
X	Nichtmetallische Werkstoffe	Kohlefaserverstärkter Kunststoff	CFK		44							
		Grafit			45							
	i .											

Je nach Anwendungsfall müssen sie individuell angepasst werden.

Die Vorschubempfehlungen befinden sich auf Seite B38-B43.

	-							Sch	nittgesch	windigke	it v _c [m/r	nin]								
		HC (CVD)										HC (PVD)							
	YBD252			YBM253			YBG102			YBG152			YB9320		Y	'BG205(H)		YBG212	
	a _e / D			a _e / D			a_e/D			a _e / D			a_e/D			a_e/D			a _e / D	
1/1 3/4	1/5	1/20	1/1 3/4	1/5	1/20	1/1 3/4	1/5	1/20	1/1 3/4	1/5	1/20	1/1 3/4	1/5	1/20	1/1 3/4	1/5	1/20	1/1 3/4	1/5	1/20
			260	300	390	270	315	410	255	295	385	245	285	375	235	275	360	240	280	365
			225	255	335	230	270	355	220	255	335	210	245	320	200	235	310	205	240	315
			210	240	315	220	255	335	205	240	315	200	230	300	190	220	290	195	225	295
			185	210	275	190	225	295	180	210	275	175	200	260	165	195	255	170	200	260
			170	195	255	180	205	270	170	195	255	160	190	250	155	180	235	160	185	245
			225	255	335	230	270	355	220	255	335	210	245	320	200	235	310	205	240	315
			185	210	275	190	225	295	180	210	275	175	200	260	165	195	255	170	200	260
			170	195	255	180	205	270	170	195	255	160	190	250	155	180	235	160	185	245
			145	165	215	150	175	230	145	165	215	135	160	210	130	155	205	135	155	205
			130	150	195	135	160	210	130	150	195	125	145	190	120	140	185	120	140	185
			95	105	140	95	115	150	90	105	140	90	100	130	85	100	130	85	100	130
			130	150	195	135	160	205	130	150	195	125	145	190	120	140	180	120	140	185
			110	130	165	115	135	175	110	125	165	105	120	160	100	120	155	105	120	155
			140	160	210	145	170	220	140	160	205	130	155	200	125	150	195	130	150	195
			110	130	165	115	135	175	110	125	165	105	120	160	100	120	155	105	120	155
290	335	440		.50	.03	300	345	450	285	330	430	270	315	410	260	300	390	265	305	400
170	195	255				180	205	270	170	195	255	160	190	250	155	180	235	160	185	245
195	225	295				205	240	315	195	225	295	185	215	280	180	210	275	180	210	275
130	150	195				135	160	210	130	150	195	125	145	190	120	140	185	120	140	185
235	270	355				245	285	375	230	270	355	225	260	340	215	250	325	220	255	335
160	180	235				165	190	250	155	180	235	150	175	230	145	165	215	145	170	225
100	100	233				103	150	230	133	100	233	150	173	230	175	103	213	143	170	223
												beschick				tl : '	andt-!!	(T:C) - (T:ND C:	
											HI	unpesch	ııcntete	s Hartm	etail, Ha	uptpest	andteil	(TiC) o. (HIN), Ce	rmet

HW unbeschichtetes Hartmetall, Hauptbestandteil (WC)

BL Kubisch-kristallines Bornitrid mit niedrigem Bornitridgehalt BH Kubisch-kristallines Bornitrid mit hohem Bornitridgehalt

CN Si₃N₄ Keramik

CM Mischkeramik

HC₁ beschichtetes Cermet

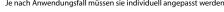
BC CBN mit Beschichtung CC Schneidkeramik beschichtet

CR Schneidkeramik, Hauptbestandteil Aluminiumoxid (Al₂O₃), verstärkt

OP Polykristalliner Diamant

Vorschubempfehlung

Wendeschneidplatten-Fräser – Gruppe 2 (FMA01/02/03/04, FME02/03/17, FMP01/02, EMP01/02/03/04/05/08/10/14)


									Vorsch	ub pro	Schneid	e [mm]								
		FM	A01 FM	A02		FMA03			FMA03			FMA04			FMA04			FMA04		
	Werkstoffgruppe		SEET12			SEKN12			SEKN15			OFKT05			OFKR07			ODHT06	5	
										Bearbei	tungsart									
		F	М	R	F	М	R	F	М	R	F	М	R	F	М	R	F	М	R	
	Unlegierter Stahl	0,15	0,20	0,25		0,18			0,20		0,20	0,25		0,20	0,25		0,20	0,25		
Ρ	Niedriglegierter Stahl	0,14	0,19	0,23		0,17			0,19		0,19	0,23		0,19	0,23		0,19	0,23		
_	Hochlegierter Stahl und hochlegierter Werkzeugstahl	0,13	0,18	0,22		0,16			0,18		0,18	0,22		0,18	0,22		0,18	0,22		
M	Nichtrostender Stahl	0,11	0,14	0,18		0,13			0,14		0,14	0,18		0,14	0,18		0,14	0,18		
	Grauguss	0,17	0,22	0,28		0,20			0,22		0,22	0,28		0,22	0,28		0,22	0,28		
K	Gusseisen mit Kugelgrafit	0,15	0,20	0,25		0,18			0,20		0,20	0,25		0,20	0,25		0,20	0,25		
	Temperguss	0,15	0,20	0,25		0,18			0,20		0,20	0,25		0,20	0,25		0,20	0,25		
	Aluminium-Knetlegierungen	0,13	0,17	0,21							0,17	0,21		0,17	0,21		0,17	0,21		
Ν	Aluminium-Gusslegierungen	0,13	0,17	0,21							0,17	0,21		0,17	0,21		0,17	0,21		
	Kupfer und Kupferlegierungen (Bronze/Messing)	0,11	0,15	0,19							0,15	0,19		0,15	0,19		0,15	0,19		
S	Warmfeste Legierungen	0,11	0,14	0,18							0,14	0,18		0,14	0,18		0,14	0,18		
3	Titanlegierungen	0,11	0,14	0,18							0,14	0,18		0,14	0,18		0,14	0,18		
	Gehärteter Stahl																			
Н	Hartguss																			
	Gehärtetes Gusseisen																			
X	Nichtmetallische Werkstoffe																			

Je nach Anwendungsfall müssen sie individuell angepasst werden.

Wendeschneidplatten-Fräser – Gruppe 2 (FMA01/02/03/04, FME02/03/17, FMP01/02, EMP01/02/03/04/05/08/10/14)

	•	• •	-				-			-		-						-	
									Vorsch	ub pro	Schneid	e [mm]							
		EM	P03 EM	IP04		EMP05			EMP08			EMP10			EMP14				
	Werkstoffgruppe		APKT11			ADKT**	,		SNGY			SOKX			VPGT22	!			
										Bearbei	tungsart						I		
		F	М	R	F	М	R	F	М	R	F	М	R	F	М	R			
	Unlegierter Stahl	0,12	0,17	0,23	0,10	0,15	0,20	0,12	0,2	-	0,12	0,2	-						
P	Niedriglegierter Stahl	0,11	0,16	0,21	0,09	0,14	0,19	0,1	0,14	-	0,1	0,14	-						
•	Hochlegierter Stahl und hochlegierter Werkzeugstahl	0,10	0,15	0,20	0,09	0,13	0,18	0,1	0,14	-	0,1	0,14	-						
M	Nichtrostender Stahl	0,08	0,12	0,16	0,07	0,11	0,14	0,1	0,14	-	0,1	0,14	-						
	Grauguss	0,13	0,19	0,25	0,11	0,17	0,22	0,1	0,2	-	0,1	0,2	-						
K	Gusseisen mit Kugelgrafit	0,12	0,17	0,23	0,10	0,15	0,20	0,1	0,2	-	0,1	0,2	-						
	Temperguss	0,12	0,17	0,23	0,10	0,15	0,20	0,1	0,2	-	0,1	0,2	-						
	Aluminium-Knetlegierungen	0,10	0,15	0,20	0,09	0,13	0,17							0,05	0,2	0,3			
N	Aluminium-Gusslegierungen	0,10	0,15	0,20	0,09	0,13	0,17							0,05	0,2	0,3			
	Kupfer und Kupferlegierungen (Bronze/Messing)	0,09	0,13	0,18	0,08	0,11	0,15							0,05	0,2	0,3			
S	Warmfeste Legierungen																		
3	Titanlegierungen																		
	Gehärteter Stahl																		
Н	Hartguss																		
	Gehärtetes Gusseisen																		
X	Nichtmetallische Werkstoffe																		

Hinweise: Bei den vorgegebenen Schnittdaten handelt es sich um Richtwerte, welche unter Idealbedingungen ermittelt wurden. Je nach Anwendungsfall müssen sie individuell angepasst werden.

										Vorsch	ub pro S	chneide	e [mm]										
	FME02			FME03			FME03			FME17			FMP01			FMP02		EMI	P01 EM	P02	EMF	P01 EMI	P02
	SPK*12			SPK*12			SPK*15		SNG	X1205EN	NN**		TPKN22			SEET12			APKT11			APKT16	
									•		Bearbeit	ungsart											
F	М	R	F	М	R	F	М	R	F	М	R	F	м	R	F	М	R	F	М	R	F	М	R
	0,20			0,19			0,20		0,20	0,25			0,20		0,15	0,20	0,25	0,10	0,15	0,20	0,12	0,17	0,23
	0,19			0,17			0,19		0,19	0,23			0,19		0,14	0,19	0,23	0,09	0,14	0,19	0,11	0,16	0,21
	0,18			0,16			0,18		0,18	0,22			0,18		0,13	0,18	0,22	0,09	0,13	0,18	0,10	0,15	0,20
	0,14			0,13			0,14		0,14	0,18			0,14		0,11	0,14	0,18	0,07	0,11	0,14	0,08	0,12	0,16
	0,22			0,20			0,22		0,22	0,28			0,22		0,17	0,22	0,28	0,11	0,17	0,22	0,13	0,19	0,25
	0,20			0,19			0,20		0,20	0,25			0,20		0,15	0,20	0,25	0,10	0,15	0,20	0,12	0,17	0,23
	0,20			0,19			0,20		0,20	0,25			0,20		0,15	0,20	0,25	0,10	0,15	0,20	0,12	0,17	0,23
									0,17	0,21					0,13	0,17	0,21	0,09	0,13	0,17	0,10	0,15	0,20
									0,17	0,21					0,13	0,17	0,21	0,09	0,13	0,17	0,10	0,15	0,20
									0,15	0,19					0,11	0,15	0,19	0,08	0,11	0,15	0,09	0,13	0,18
									0,14	0,18													
									0,14	0,18													
																				Sch	lichten		

M Mittlere Bearbeitung

Schruppen

												,
										- 6-1		

F Schlichten

M Mittlere Bearbeitung

R Schruppen

Vorschubempfehlung

Wendeschneidplatten-Fräser – Gruppe 7 (XMR01, XMR12, XMR13, XMP01, QCH)

					Vorsch	ub pro Schneid	e [mm]				
		>	KMR01 Planfräse	n	х	MR01 Tauchfräse	en	ΧN	/IR01 Zirkularfrä:	sen	
	Werkstoffgruppe		SDMT/WPGT			SDMT/WPGT			SDMT/WPGT		
					Werkz	eugdurchmesse	r [mm]				
		20-25	30-50	63-160	20-25	30-50	63-160	20-25	30–50	63-160	
	Unlegierter Stahl	1,00	1,20	2,00	0,20	0,25	0,30	0,80	0,96	1,40	
Р	Niedriglegierter Stahl	0,93	1,12	1,86	0,19	0,23	0,28	0,74	0,89	1,30	
	Hochlegierter Stahl und hochlegierter Werkzeugstahl	0,70	0,84	1,40	0,18	0,22	0,26	0,70	0,84	1,23	
M	Nichtrostender Stahl	0,50	0,60	1,00	0,14	0,18	0,21	0,56	0,67	0,98	
	Grauguss	0,90	1,08	1,80	0,22	0,28	0,33	0,88	1,06	1,54	
K	Gusseisen mit Kugelgrafit	0,90	1,08	1,80	0,20	0,25	0,30	0,80	0,96	1,40	
	Temperguss	1,00	1,20	2,00	0,20	0,25	0,30	0,80	0,96	1,40	
	Aluminium-Knetlegierungen										
N	Aluminium-Gusslegierungen										
	Kupfer und Kupferlegierungen (Bronze/Messing)										
S	Warmfeste Legierungen										
3	Titanlegierungen										
	Gehärteter Stahl										
Н	Hartguss										
	Gehärtetes Gusseisen										
X	Nichtmetallische Werkstoffe										

Je nach Anwendungsfall müssen sie individuell angepasst werden.

Wendeschneidplatten-Fräser – Gruppe 7 (XMR01, XMR12, XMR13, XMP01, QCH)

					Vorschub pro	Schneide [mm]				
		XMP01	QCH	QCH	QCH	QCH	QCH	QCH	QCH	
	Werkstoffgruppe	CNE	ZOHX	RD*	APKT	WPGT	SDMT	XPHT	ENMX	
				•	Werkzeugdurd	hmesser [mm]				
		80-400	16-32	15–32	16-40	20-42	20-40	16-32	16–40	
	Unlegierter Stahl	0,20	0,20	0,20	0,15	1,00	1,00	0,20	1,00	
Р	Niedriglegierter Stahl	0,20	0,19	0,19	0,14	0,93	0,93	0,19	0,93	
_	Hochlegierter Stahl und hochlegierter Werkzeugstahl	0,20	0,18	0,18	0,13	0,70	0,70	0,18	0,70	
M	Nichtrostender Stahl	0,20	0,14	0,14	0,11	0,50	0,50	0,14	0,50	
	Grauguss	0,20	0,22	0,22	0,17	0,90	0,90	0,22	0,90	
K	Gusseisen mit Kugelgrafit	0,20	0,20	0,20	0,15	0,90	0,90	0,20	0,90	
	Temperguss	0,20	0,20	0,20	0,15	1,00	1,00	0,20	1,00	
	Aluminium-Knetlegierungen				0,13					
N	Aluminium-Gusslegierungen				0,13					
	Kupfer und Kupferlegierungen (Bronze/Messing)				0,11					
S	Warmfeste Legierungen									
3	Titanlegierungen									
	Gehärteter Stahl									
Н	Hartguss									
	Gehärtetes Gusseisen									
X	Nichtmetallische Werkstoffe									

Hinweise: Bei den vorgegebenen Schnittdaten handelt es sich um Richtwerte, welche unter Idealbedingungen ermittelt wurden. Je nach Anwendungsfall müssen sie individuell angepasst werden.

			Vorschub pro S	Schneide [mm]				
XMR12 P	lanfräsen	XMR12 Ta	uchfräsen	XMR12 Zirl	kularfräsen	XMR12	XMR13	
ENMX-R30	/ ENMX-XR	ENMX-R30	/ ENMX-XR	ENMX-R30	/ ENMX-XR	ENMX-08-GM	SNMU13	
			Werkzeugdurd	hmesser [mm]				,
16–30	32-63	16–30	32-63	16–30	32-63	16-63	50-160	
1,00	1,20	0,20	0,25	0,80	0,96	0,20	1,5	
0,93	1,12	0,19	0,23	0,74	0,89	0,20	1,5	
0,70	0,84	0,18	0,22	0,70	0,84	0,20	1,2	
0,50	0,60	0,14	0,18	0,56	0,67	0,20	1,2	
0,90	1,08	0,22	0,28	0,88	1,06	0,20	1,5	
0,90	1,08	0,20	0,25	0,80	0,96	0,20	1,2	
1,00	1,20	0,20	0,25	0,80	0,96	0,20	1,2	

B74

A

Drehen

В

Fräsen

C

Bohren

ח

Technische Information

Ε

Index

Serie PGMS

Die ideale Lösung für komplexe Konturen

IHRE VORTEILE

- **Höhere Produktivität** durch konische Schneidenform
- Perfekte Oberflächen durch vibrationsarme Bearbeitung
- Verkürzte Prozesszeiten durch optimierte Werkzeuggeometrie
- Hervorragende Standzeiten in HRSA & Titan dank angepasster Schneidengeometrie

Wechselkopfbohrer

Systemcode – Bohrkörper C76
Systemcode – Bohrkronen C77

Wechselkopfbohrsystem ZTE C78–C95

Schnittdatenempfehlungen C96–C99

B

Ε

ED160 ZTE 03 XΡ 20

Ausführung							
Code	Beschreibung						
ZTE	Kronenbohrer						
	1						

L/D Verhältnis							
Code	Beschreibung						
015	1,5 x D						
03	3xD						
05	5x D						
08	8xD						
2							

Durchmesserbereich [mm]							
Code	Beschreibung						
ED160	16–16,9						
	3						

Schaftausführung									
Code	Beschreibung								
G	Zylinderschaft								
XP Weldon-Schaft									
	4								

Kupplungsgröße Ø [mm] 5

	Waltim							
	Kühlung							
Code	Beschreibung							
С	Innenkühlung normale Spiralisierung							
HC	Innenkühlung geringe Spiralisierung							
	4							

EDR 1600 - 065 - UD

1 2 3 4

	Ausführung							
Code	Beschreibung							
EDR Bohrkrone								
	1							

Durchmesserbereich [mm]									
Code	Beschreibung								
1600 16									
	2								

	Kupplungsgröße [mm]						
Code	Beschreibung						
065	65						
	3						

Anwendung							
Code	Beschreibung						
UD	Stahl, zähe Werkstoffe						
KD	Gusseisen						
PD	Pilotbohrer						
	4						

Wechselkopfbohrsystem ZTE

Prozesssicheres Bohren mit hohem Zerspanvolumen

IHRE VORTEILE

- Maximale Produktivität bei hohen Vorschüben und Drehzahlen
- Optimierte Geometrien & Sorten für geringe Schnittkräfte und stabile Bohrprozesse in Stahl und Guss
- Einfacher und zeitsparender Wechsel der Bohrköpfe hohe Wechselgenauigkeit
- Keine Pilotierung bis 5×D erforderlich ohne Kompromisse bei **Performance** und **Werkzeugstandzeit**
- Innovative Schnittstelle mit mehr Spannkraft für **zuverlässige Spannung im Bohrprozess**

Bohrungstiefen 1,5xD; 3xD; 5xD; 8xD

Spanbrecher

Erzeugung einer Tieflochbohrung mit ZTE08 (8xD)

Ab einer Bohrtiefe von **8xD** empfehlen wir eine **Pilotbohrung** zu setzen.

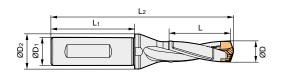
Beispiel: Tieflochbohrung 8xD im Durchmesser 18,0 mm in Stahl

Setzen der Pilotbohrung

- ZTE015-ED180-XP25C + EDR1800-075-PD (Ø18,03/Spitzenwinkel 150°)
- Schnittwerte laut Tabelle (S. C96-C97), Bohrtiefe 1,0-1,5xD
- Bitte stellen Sie sicher, dass sich nach dem Herausziehen des Pilotbohrers keine Späne in der Bohrung befinden.

Setzen der Tieflochbohrung

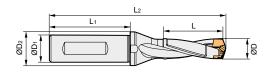
- ZTE08-ED180-XP25C + EDR1800-075-UD
- Einfädeln in die Pilotbohrung mit reduziertem Vorschub und Schnittgeschwindigkeit.
- Circa 2–3 mm vor dem Bohrgrund stehenbleiben und die Innenkühlung anstellen.
- Die Schnittgeschwindigkeit laut Tabelle erhöhen und anschließend mit dem Vorschub beginnen.
- Bei Querbohrungen gegebenenfalls den Vorschub reduzieren.
- Nach Erreichen der Bohrtiefe die Schnittgeschwindigkeit und Vorschub reduzieren. Dann den Bohrer herausziehen.
- Bei Durchgangslöchern die Bohrkrone nur zur Hälfte austreten lassen, um eine Beschädigung beim Zurückziehen zu verhindern.


Wechselkopfbohrer

ZTE015

	* Lag		Abmessungen [mm]							
Artikel		Lager	ØD	ØD1	ØD2	L1	L2	L	Schlüssel	Bohrkopf
ZTE015-ED120-XP16C	*	•	12-12.9	16	20	48	84,50	18,0	ZTK12-15.9	EDR12**
ZTE015-ED130-XP16C	*	•	13-13.9	16	20	48	86,00	19,5	ZTK12-15.9	EDR13**
ZTE015-ED140-XP16C	*	•	14-14.9	16	25	48	92,50	21,0	ZTK12-15.9	EDR14**
ZTE015-ED150-XP20C	*	•	15-15.9	20	25	50	94,00	22,5	ZTK12-15.9	EDR15**
ZTE015-ED160-XP20C	*	•	16-16.9	20	25	50	95,50	24,0	ZTK16-20.9	EDR16**
ZTE015-ED170-XP20C	*	•	17-17.9	20	25	50	97,00	25,5	ZTK16-20.10	EDR17**
ZTE015-ED180-XP25C	*	•	18-18.9	25	32	56	106,50	27,0	ZTK16-20.11	EDR18**
ZTE015-ED190-XP25C	*	•	19-19.9	25	32	56	108,00	28,5	ZTK16-20.12	EDR19**
ZTE015-ED200-XP25C	*	•	20-20.9	25	32	56	109,50	30,0	ZTK16-20.13	EDR20**
ZTE015-ED210-XP25C	*	•	21-21.9	25	32	56	111,00	31,5	ZTK21-25.9	EDR21**
ZTE015-ED220-XP25C	*	•	22-22.9	25	32	56	112,50	33,0	ZTK21-25.10	EDR22**
ZTE015-ED230-XP32C	*	•	23.23.9	32	42	60	126,00	34,5	ZTK21-25.11	EDR23**
ZTE015-ED240-XP32C	*	•	24-24.9	32	42	60	127,50	36,0	ZTK21-25.12	EDR24**
ZTE015-ED250-XP32C	*	•	25-25.9	32	42	60	129,00	37,5	ZTK21-25.13	EDR25**

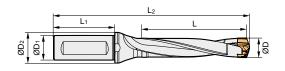
^{*} Interne Kühlung


	Ersatzteile			
	Bohrkopf	EDR1200-1590	EDR1600-2090	EDR2100-2590
D	Schlüssel	ZTK12-15,9	ZTK16-20,9	ZTK21-25,9

					Abmessur	ngen [mm]				
Artikel	*	Lager	ØD	ØD1	ØD2	L1	L2	L	Schlüssel	Bohrkopf
ZTE03-ED120-XP16C	*	•	12-12.4	16	20	48	104,0	36,0	ZTK12-15.9	EDR12**
ZTE03-ED125-XP16C	*	•	12.5-12.9	16	20	48	105,5	37,0	ZTK12-15.10	EDR12**
ZTE03-ED130-XP16C	*	•	13-13.4	16	20	48	107,0	39,0	ZTK12-15.9	EDR13**
ZTE03-ED135-XP16C	*	•	13.5-13.9	16	20	48	108,5	41,0	ZTK12-15.10	EDR13**
ZTE03-ED140-XP16C	*	•	14-14.9	16	20	50	115,0	42,0	ZTK12-15.9	EDR14**
ZTE03-ED145-XP16C	*	•	14-14.10	16	20	50	116,5	44,0	ZTK12-15.10	EDR14**
ZTE03-ED150-XP20C	*	•	15-15.9	20	25	50	118,0	45,0	ZTK12-15.9	EDR15**
ZTE03-ED160-XP20C	*	•	16-16.9	20	25	50	121,0	48,0	ZTK16-20.9	EDR16**
ZTE03-ED170-XP20C	*	•	17-17.9	20	25	50	124,0	51,0	ZTK16-20.10	EDR17**
ZTE03-ED180-XP25C	*	•	18-18.9	25	32	56	135,0	54,0	ZTK16-20.11	EDR18**
ZTE03-ED190-XP25C	*	•	19-19.9	25	32	56	138,0	57,0	ZTK16-20.12	EDR19**
ZTE03-ED200-XP25C	*	•	20-20.9	25	32	56	141,0	60,0	ZTK16-20.13	EDR20**
ZTE03-ED210-XP25C	*	•	21-21.9	25	32	56	144,0	63,0	ZTK21-25.9	EDR21**
ZTE03-ED220-XP25C	*	•	22-22.9	25	32	56	147,0	66,0	ZTK21-25.10	EDR22**
ZTE03-ED230-XP32C	*	•	23.23.9	32	42	60	162,0	69,0	ZTK21-25.11	EDR23**
ZTE03-ED240-XP32C	*	•	24-24.9	32	42	60	165,0	72,0	ZTK21-25.12	EDR24**
ZTE03-ED250-XP32C	*	•	25-25.9	32	42	60	168,0	75,0	ZTK21-25.13	EDR25**

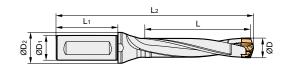
Interne Kühlung

	Ersatzteile			
	Bohrkopf	EDR1200-1590	EDR1600-2090	EDR2100-2590
D	Schlüssel	ZTK12-15,9	ZTK16-20,9	ZTK21-25,9

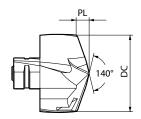

Wechselkopfbohrer

					Abmessur	ngen [mm]				
Artikel	*	Lager	ØD	ØD1	ØD2	L1	L2	L	Schlüssel	Bohrkopf
ZTE05-ED120-XP16C	*	•	12-12.4	16	20	48	130,0	60,0	ZTK12-15.9	EDR12**
ZTE05-ED125-XP16C	*	•	12,5-12.9	16	20	48	132,5	62,0	ZTK12-15.10	EDR12**
ZTE05-ED130-XP16C	*	•	13-13.4	16	20	48	135,0	65,0	ZTK12-15.9	EDR13**
ZTE05-ED135-XP16C	*	•	13,5-13.9	16	20	48	137,5	68,0	ZTK12-15.10	EDR13**
ZTE05-ED140-XP16C	*	•	14-14.9	20	25	50	145,0	70,0	ZTK12-15.9	EDR14**
ZTE05-ED145-XP16C	*	•	14-14.10	20	25	50	147,5	73,0	ZTK12-15.10	EDR14**
ZTE05-ED150-XP20C	*	•	15-15.9	20	25	50	150,0	75,0	ZTK12-15.9	EDR15**
ZTE05-ED160-XP20C	*	•	16-16.9	20	25	50	155,0	80,0	ZTK16-20.9	EDR16**
ZTE05-ED170-XP20C	*	•	17-17.9	20	25	50	160,0	85,0	ZTK16-20.10	EDR17**
ZTE05-ED180-XP25C	*	•	18-18.9	25	32	56	173,0	90,0	ZTK16-20.11	EDR18**
ZTE05-ED190-XP25C	*	•	19-19.9	25	32	56	178,0	95,0	ZTK16-20.12	EDR19**
ZTE05-ED200-XP25C	*	•	20-20.9	25	32	56	183,0	100,0	ZTK16-20.13	EDR20**
ZTE05-ED210-XP25C	*	•	21-21.9	25	32	56	188,0	105,0	ZTK21-25.9	EDR21**
ZTE05-ED220-XP25C	*	•	22-22.9	25	32	56	193,0	110,0	ZTK21-25.10	EDR22**
ZTE05-ED230-XP32C	*	•	23.23.9	32	42	60	210,0	115,0	ZTK21-25.11	EDR23**
ZTE05-ED240-XP32C	*	•	24-24.9	32	42	60	215,0	120,0	ZTK21-25.12	EDR24**
ZTE05-ED250-XP32C	*	•	25-25.9	32	42	60	220,0	125,0	ZTK21-25.13	EDR25**

Interne Kühlung

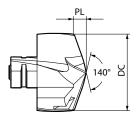

	Ersatzteile			
	Bohrkopf	EDR1200-1590	EDR1600-2090	EDR2100-2590
D	Schlüssel	ZTK12-15,9	ZTK16-20,9	ZTK21-25,9

					Abmessur	ngen [mm]				
Artikel	*	Lager	ØD	ØD1	ØD2	L1	L2	L	Schlüssel	Bohrkopf
ZTE08-ED120-XP16C	*	0	12-12.4	16	20	48	169,0	96,0	ZTK12-15.9	EDR12**
ZTE08-ED125-XP16C	*	0	12,5-12.9	16	20	48	173,0	99,5	ZTK12-15.10	EDR12**
ZTE08-ED130-XP16C	*	0	13-13.4	16	20	48	177,0	104,0	ZTK12-15.9	EDR13**
ZTE08-ED135-XP16C	*	0	13,5-13.9	16	20	48	181,0	108,5	ZTK12-15.10	EDR13**
ZTE08-ED140-XP16C	*	0	14-14.9	20	25	50	190,0	112,0	ZTK12-15.9	EDR14**
ZTE08-ED145-XP16C	*	0	14-14.10	20	25	50	194,0	116,5	ZTK12-15.10	EDR14**
ZTE08-ED150-XP20C	*	0	15-15.9	20	25	50	198,0	120,0	ZTK12-15.9	EDR15**
ZTE08-ED160-XP20C	*	0	16-16.9	20	25	50	206,0	128,0	ZTK16-20.9	EDR16**
ZTE08-ED170-XP20C	*	0	17-17.9	20	25	50	214,0	136,0	ZTK16-20.10	EDR17**
ZTE08-ED180-XP25C	*	0	18-18.9	25	32	56	230,0	144,0	ZTK16-20.11	EDR18**
ZTE08-ED190-XP25C	*	0	19-19.9	25	32	56	238,0	152,0	ZTK16-20.12	EDR19**
ZTE08-ED200-XP25C	*	0	20-20.9	25	32	56	246,0	160,0	ZTK16-20.13	EDR20**
ZTE08-ED210-XP25C	*	0	21-21.9	25	32	56	254,0	168,0	ZTK21-25.9	EDR21**
ZTE08-ED220-XP25C	*	0	22-22.9	25	32	56	262,0	176,0	ZTK21-25.10	EDR22**
ZTE08-ED230-XP32C	*	0	23.23.9	32	42	60	282,0	184,0	ZTK21-25.11	EDR23**
ZTE08-ED240-XP32C	*	0	24-24.9	32	42	60	290,0	192,0	ZTK21-25.12	EDR24**
ZTE08-ED250-XP32C	*	0	25-25.9	32	42	60	298,0	200,0	ZTK21-25.13	EDR25**


^{*} Interne Kühlung

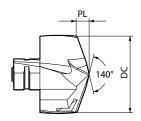
	Ersatzteile			
	Bohrkopf	EDR1200-1590	EDR1600-2090	EDR2100-2590
D	Schlüssel	ZTK12-15,9	ZTK16-20,9	ZTK21-25,9

A

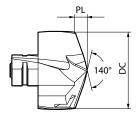

	Abmessu	ngen [mm]	Sorte		
Artikel	PL	Dc	KDG3013	Bohrkörper	Schlüssel
EDR1200-045-UD	2,18	12,00	•		
EDR1210-045-UD	2,20	12,10	0	ZTE015-ED120-**	
EDR1220-045-UD	2,22	12,20	0	ZTE03-ED120-** ZTE05-ED120-**	
EDR1230-045-UD	2,24	12,30	0	ZTE03-ED120-**	
EDR1240-045-UD	2,26	12,40	0	2.200 25.20	
EDR1250-045-UD	2,27	12,50	•		
EDR1260-045-UD	2,29	12,60	0	ZTE015-ED125-**	
EDR1270-045-UD	2,31	12,70	0	ZTE03-ED125-** ZTE05-ED125-**	
EDR1280-045-UD	2,33	12,80	•	ZTE08-ED125-**	
EDR1290-045-UD	2,35	12,90	0	21200 25 125	
EDR1300-050-UD	2,36	13,00	•		
EDR1310-050-UD	2,38	13,10	•	ZTE015-ED130-**	
EDR1320-050-UD	2,40	13,20	0	ZTE03-ED130-** ZTE05-ED130-**	
EDR1330-050-UD	2,42	13,30	0	ZTE08-ED130-**	
EDR1340-050-UD	2,44	13,40	•	21200 25130	
EDR1350-050-UD	2,46	13,50	•		
EDR1360-050-UD	2,47	13,60	0	ZTE015-ED130-**	
EDR1370-050-UD	2,49	13,70	0	ZTE03-ED135-**	
EDR1380-050-UD	2,51	13,80	0	ZTE05-ED135-** ZTE08-ED135-**	
EDR1390-050-UD	2,53	13,90	0	21200 20155	7TV12 15 0
EDR1400-055-UD	2,55	14,00	•		- ZTK12-15.9
EDR1410-055-UD	2,56	14,10	0	ZTE015-ED140-**	
EDR1420-055-UD	2,58	14,20	0	ZTE03-ED140-** ZTE05-ED140-**	
EDR1430-055-UD	2,60	14,30	0	ZTE08-ED140-**	
EDR1440-055-UD	2,62	14,40	0	21200 20140	
EDR1450-055-UD	2,64	14,50	•		
EDR1460-055-UD	2,66	14,60	0	ZTE015-ED140-**	
EDR1470-055-UD	2,67	14,70	0	ZTE03-ED145-**	
EDR1480-055-UD	2,69	14,80	0	ZTE05-ED145-** ZTE08-ED145-**	
EDR1490-055-UD	2,71	14,90	0	21200 20173	
EDR1500-060-UD	2,73	15,00	•		
EDR1510-060-UD	2,75	15,10	•		
EDR1520-060-UD	2,76	15,20	0		
EDR1530-060-UD	2,78	15,30	•	ZTE015-ED150-**	
EDR1540-060-UD	2,80	15,40	0	ZTE013-ED150-** ZTE03-ED150-**	
EDR1550-060-UD	2,82	15,50	•		
EDR1560-060-UD	2,84	15,60	0	ZTE08-ED150-**	
EDR1570-060-UD	2,86	15,70	•		
EDR1580-060-UD	2,87	15,80	0		
EDR1590-060-UD	2.89	15,90	0		

EDR1590-060-UD

◆ Ab Lager ○ Auf Anfrage

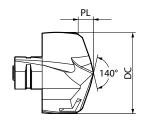


	Abmessur	ngen [mm]	Sorte		
Artikel	PL	Dc	KDG3013	Bohrkörper	Schlüssel
EDR1600-065-UD	2,91	16,00	•		
EDR1610-065-UD	2,93	16,10	0		
EDR1620-065-UD	2,95	16,20	0		
EDR1630-065-UD	2,96	16,30	•	ZTE015-ED160-**	
EDR1640-065-UD	2,98	16,40	0	ZTE03-ED160-**	
EDR1650-065-UD	3,00	16,50	•	ZTE05-ED160-**	
EDR1660-065-UD	3,02	16,60	0	ZTE08-ED160-**	
EDR1670-065-UD	3,04	16,70	0		
EDR1680-065-UD	3,06	16,80	0		
EDR1690-065-UD	3,07	16,90	•		
EDR1700-070-UD	3,09	17,00	•		
EDR1710-070-UD	3,11	17,10	0		
EDR1720-070-UD	3,13	17,20	0		
EDR1730-070-UD	3,15	17,30	•	ZTE015-ED170-**	
EDR1740-070-UD	3,16	17,40	0	ZTE03-ED170-**	
EDR1750-070-UD	3,18	17,50	•	ZTE05-ED170-**	
EDR1760-070-UD	3,20	17,60	0	ZTE08-ED170-**	
EDR1770-070-UD	3,22	17,70	0		
EDR1780-070-UD	3,24	17,80	0		
EDR1790-070-UD	3,26	17,90	0		771/16 20 /
EDR1800-075-UD	3,27	18,00	•		ZTK16-20.9
EDR1810-075-UD	3,29	18,10	0		
EDR1820-075-UD	3,31	18,20	0		
EDR1830-075-UD	3,33	18,30	0	ZTE015-ED180-**	
EDR1840-075-UD	3,35	18,40	0	ZTE03-ED180-**	
EDR1850-075-UD	3,36	18,50	•	ZTE05-ED180-**	
EDR1860-075-UD	3,38	18,60	0	ZTE08-ED180-**	
EDR1870-075-UD	3,40	18,70	0		
EDR1880-075-UD	3,42	18,80	0		
EDR1890-075-UD	3,44	18,90	•		
EDR1900-080-UD	3,46	19,00	•		
EDR1910-080-UD	3,47	19,10	0		
EDR1920-080-UD	3,49	19,20	0		
EDR1930-080-UD	3,51	19,30	•	ZTE015-ED190-**	
EDR1940-080-UD	3,53	19,40	0	ZTE03-ED190-**	
EDR1950-080-UD	3,55	19,50	•	ZTE05-ED190-**	
EDR1960-080-UD	3,56	19,60	0	ZTE08-ED190-**	
EDR1970-080-UD	3,58	19,70	0		
EDR1980-080-UD	3,60	19,80	0		
EDR1990-080-UD	3,62	19,90	0		

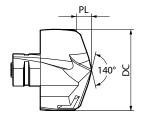


	Abmessu	ngen [mm]	Sorte		
Artikel	PL	Dc	KDG3013	Bohrkörper	Schlüssel
EDR2000-085-UD	3,64	20,00	•		
EDR2010-085-UD	3,66	20,10	0		
EDR2020-085-UD	3,67	20,20	0		
EDR2030-085-UD	3,69	20,30	0	ZTE015-ED200-**	
EDR2040-085-UD	3,71	20,40	0	ZTE03-ED200-**	77// 4 00 6
EDR2050-085-UD	3,73	20,50	•	ZTE05-ED200-**	ZTK16-20.9
EDR2060-085-UD	3,75	20,60	0	ZTK08-ED200-**	
EDR2070-085-UD	3,77	20,70	0		
EDR2080-085-UD	3,78	20,80	0		
EDR2090-085-UD	3,80	20,90	0		
EDR2100-090-UD	3,82	21,00	•		
EDR2110-090-UD	3,84	21,10	0		
EDR2120-090-UD	3,86	21,20	0		
EDR2130-090-UD	3,88	21,30	•	ZTE015-ED210-**	
EDR2140-090-UD	3,89	21,40	0	ZTE03-ED210-**	
EDR2150-090-UD	3,91	21,50	•	ZTE05-ED210-** ZTE08-ED210-**	
EDR2160-090-UD	3,93	21,60	0		
EDR2170-090-UD	3,95	21,70	0		
EDR2800-090-UD	3,97	21,80	0		
EDR2190-090-UD	3,98	21,90	0		
EDR2200-095-UD	4,00	22,00	•		
EDR2210-095-UD	4,02	22,10	0		
EDR2220-095-UD	4,04	22,20	0		
EDR2230-095-UD	4,06	22,30	0	ZTE015-ED220-**	
EDR2240-095-UD	4,08	22,40	0	ZTE03-ED220-**	7TV21 25 (
EDR2250-095-UD	4,09	22,50	•	ZTE05-ED220-**	ZTK21-25.9
EDR2260-095-UD	4,11	22,60	0	ZTE08-ED220-**	
EDR2270-095-UD	4,13	22,70	0		
EDR2280-095-UD	4,15	22,80	0		
EDR2290-095-UD	4,17	22,90	0		
EDR2300-100-UD	4,18	23,00	•		
EDR2310-100-UD	4,20	23,10	0		
EDR2320-100-UD	4,22	23,20	0		
EDR2330-100-UD	4,24	23,30	•	ZTE015-ED230-**	
EDR2340-100-UD	4,26	23,40	0	ZTE015 ED230-**	
EDR2350-100-UD	4,27	23,50	•	ZTE05-ED230-**	
EDR2360-100-UD	4,29	23,60	0	ZTE08-ED230-**	
EDR2370-100-UD	4,31	23,70	0		
EDR2380-100-UD	4,33	23,80	0		
EDR2390-100-UD	4,35	23,90	0		

EDR2390-100-UD ◆ Ab Lager ○ Auf Anfrage

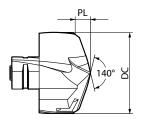


	Abmessun	gen [mm]	Sorte		
Artikel	PI	Dc	KDG3013	Bohrkörper	Schlüssel
EDR2400-110-UD	4,37	24,00	•		
EDR2410-110-UD	4,38	24,10	0		
EDR2420-110-UD	4,40	24,20	0		
EDR2430-110-UD	4,42	24,30	0	ZTE015-ED240-**	
EDR2440-110-UD	4,44	24,40	0	ZTE03-ED240-**	
EDR2450-110-UD	4,46	24,50	•	ZTE05-ED240-**	
EDR2460-110-UD	4,48	24,60	0	ZTE08-ED240-**	ZTK21-25.9
EDR2470-110-UD	4,49	24,70	0	_	
EDR2480-110-UD	4,51	24,80	0		
EDR2490-110-UD	4,53	24,90	0		
EDR2500-115-UD	4,55	25,00	•		
EDR2510-115-UD	4,57	25,10	0		
EDR2520-115-UD	4,58	25,20	0		
EDR2530-115-UD	4,60	25,30	0	ZTE015-ED250-**	
EDR2540-115-UD	4,62	25,40	0	ZTE03-ED250-**	
EDR2550-115-UD	4,64	25,50	•	ZTE05-ED250-** ZTE08-ED250-**	
EDR2560-115-UD	4,66	25,60	0		
EDR2570-115-UD	4,68	25,70	0		
EDR2580-115-UD	4,69	25,80	0		
EDR2590-115-UD	4,70	25,90	0		


	Abmessu	ngen [mm]	Sorte		
Artikel	PI	Dc	KDG303	Bohrkörper	Schlüssel
EDR1200-045-KD	2,18	12,00	•		
EDR1210-045-KD	2,20	12,10	0	ZTE015-ED120-**	
EDR1220-045-KD	2,22	12,20	0	ZTE03-ED120-** ZTE05-ED120-**	
EDR1230-045-KD	2,24	12,30	0	ZTE03-ED120- ZTE08-ED120-**	
EDR1240-045-KD	2,26	12,40	0	21200 25 120	
EDR1250-045-KD	2,27	12,50	•		
EDR1260-045-KD	2,29	12,60	0	ZTE015-ED125-**	
EDR1270-045-KD	2.31	12,70	0	ZTE03-ED125-** ZTE05-ED125-**	
EDR1280-045-KD	2,33	12,80	•	ZTE03-ED125-**	
EDR1290-045-KD	2,35	12,90	0	21200 25125	
EDR1300-050-KD	2,36	13,00	•		
EDR1310-050-KD	2,38	13,10	•	ZTE015-ED130-**	
EDR1320-050-KD	2,40	13,20	0	ZTE03-ED130-** ZTE05-ED130-**	
EDR1330-050-KD	2,42	13,30	0	ZTE08-ED130-**	
EDR1340-050-KD	2,44	13,40	•	21200 25150	
EDR1350-050-KD	2,46	13,50	•		
EDR1360-050-KD	2,47	13,60	0	ZTE015-ED130-**	
EDR1370-050-KD	2,49	13,70	0	ZTE03-ED135-**	
EDR1380-050-KD	2,51	13,80	0	ZTE05-ED135-** ZTE08-ED135-**	
EDR1390-050-KD	2,53	13,90	0	21200 25133	7TV12 15 0
EDR1400-055-KD	2,55	14,00	•		**
EDR1410-055-KD	2,56	14,10	0	ZTE015-ED140-**	
EDR1420-055-KD	2,58	14,20	0	ZTE03-ED140-** ZTE05-ED140-**	
EDR1430-055-KD	2,60	14,30	0	ZTE03-ED140-**	
EDR1440-055-KD	2,62	14,40	0	21200 20140	
EDR1450-055-KD	2,64	14,50	•		
EDR1460-055-KD	2,66	14,60	0	ZTE015-ED140-**	
EDR1470-055-KD	2,67	14,70	0	ZTE05-ED145-**	
EDR1480-055-KD	2,69	14,80	0	ZTE05-ED145-** ZTE08-ED145-**	
EDR1490-055-KD	2,71	14,90	0	21200 20173	
EDR1500-060-KD	2,73	15,00	•		
EDR1510-060-KD	2,75	15,10	•		
EDR1520-060-KD	2,76	15,20	0		
EDR1530-060-KD	2,78	15,30	•	ZTE015-ED150-**	
EDR1540-060-KD	2,80	15,40	0	ZTE03-ED150-**	
EDR1550-060-KD	2,82	15,50	•	ZTE05-ED150-**	
EDR1560-060-KD	2,84	15,60	0	ZTE08-ED150-**	
EDR1570-060-KD	2,86	15,70	•		
EDR1580-060-KD	2,87	15,80	0		
EDR1590-060-KD	2.89	15,90	0		

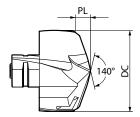
EDR1590-060-KD

◆ Ab Lager ○ Auf Anfrage



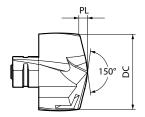
	Abmessur	ngen [mm]	Sorte		
Artikel	PI	Dc	KDG303	Bohrkörper	Schlüssel
EDR1600-065-KD	2,91	16,00	•		
EDR1610-065-KD	2,93	16,10	0		
EDR1620-065-KD	2,95	16,20	0		
EDR1630-065-KD	2.96	16,30	•	ZTE015-ED160-**	
EDR1640-065-KD	2,98	16,40	0	ZTE03-ED160-**	
EDR1650-065-KD	3,00	16,50	•	ZTE05-ED160-**	
EDR1660-065-KD	3,02	16,60	0	ZTE08-ED160-**	
EDR1670-065-KD	3,04	16,70	0		
EDR1680-065-KD	3,06	16,80	0		
EDR1690-065-KD	3,07	16,90	•		
EDR1700-070-KD	3,09	17,00	•		
EDR1710-070-KD	3,11	17,10	0		
EDR1720-070-KD	3,13	17,20	0		
EDR1730-070-KD	3,15	17,30	•	ZTE015-ED170-**	
EDR1740-070-KD	3,16	17,40	0	ZTE03-ED170-**	
EDR1750-070-KD	3,18	17,50	•	ZTE05-ED170-**	
EDR1760-070-KD	3,20	17,60	0	ZTE08-ED170-**	
EDR1770-070-KD	3,22	17,70	0		
EDR1780-070-KD	3,24	17,80	0		
EDR1790-070-KD	3,26	17,90	0		7TV16 20 /
EDR1800-075-KD	3,27	18,00	•		ZTK16-20.9
EDR1810-075-KD	3,29	18,10	0		
EDR1820-075-KD	3,31	18,20	0		
EDR1830-075-KD	3,33	18,30	0	ZTE015-ED180-**	
EDR1840-075-KD	3,35	18,40	0	ZTE03-ED180-**	
EDR1850-075-KD	3,36	18,50	•	ZTE05-ED180-**	
EDR1860-075-KD	3,38	18,60	0	ZTE08-ED180-**	
EDR1870-075-KD	3,40	18,70	0		
EDR1880-075-KD	3,42	18,80	0		
EDR1890-075-KD	3,44	18,90	•		
EDR1900-080-KD	3,46	19,00	•		
EDR1910-080-KD	3,47	19,10	0		
EDR1920-080-KD	3,49	19,20	0		
EDR1930-080-KD	3,51	19,30	•	ZTE015-ED190-**	
EDR1940-080-KD	3,53	19,40	0	ZTE03-ED190-**	
EDR1950-080-KD	3,55	19,50	•	ZTE05-ED190-**	
EDR1960-080-KD	3,56	19,60	0	ZTE08-ED190-**	
EDR1970-080-KD	3,58	19,70	0		
EDR1980-080-KD	3,60	19,80	0		
EDR1990-080-KD	3,62	19,90	0		

	Abmessu	ngen [mm]	Sorte		Schlüssel
Artikel	PI	Dc	KDG303	Bohrkörper	
EDR2000-085-KD	3,64	20,00	•		
EDR2010-085-KD	3,66	20,10	0		
EDR2020-085-KD	3,67	20,20	0		
EDR2030-085-KD	3.69	20,30	0	ZTE015-ED200-**	
EDR2040-085-KD	3,71	20,40	0	ZTE03-ED200-**	7TV16 20 0
EDR2050-085-KD	3,73	20,50	•	ZTE05-ED200-**	ZTK16-20.9
EDR2060-085-KD	3,75	20,60	0	ZTK08-ED200-**	
EDR2070-085-KD	3,77	20,70	0	•	
EDR2080-085-KD	3,78	20,80	0		
EDR2090-085-KD	3,80	20,90	0	•	
EDR2100-090-KD	3.82	21,00	•		
EDR2110-090-KD	3,84	21,10	0	•	
EDR2120-090-KD	3,86	21,20	0		
EDR2130-090-KD	3,88	21,30	•	ZTE015-ED210-**	
EDR2140-090-KD	3,89	21,40	0	ZTE03-ED210-**	
EDR2150-090-KD	3.91	21,50	•	ZTE05-ED210-**	
EDR2160-090-KD	3,93	21,60	0	ZTE08-ED210-**	
EDR2170-090-KD	3,95	21,70	0	•	
EDR2800-090-KD	3,97	21,80	0		
EDR2190-090-KD	3,98	21,90	0		
EDR2200-095-KD	4,00	22,00	•		
EDR2210-095-KD	4,02	22,10	0	•	
EDR2220-095-KD	4,04	22,20	0		
EDR2230-095-KD	4,06	22,30	0	ZTE015-ED220-**	
EDR2240-095-KD	4,08	22,40	0	ZTE03-ED220-**	
EDR2250-095-KD	4,09	22,50	•	ZTE05-ED220-**	ZTK21-25.9
EDR2260-095-KD	4,11	22,60	0	ZTE08-ED220-**	
EDR2270-095-KD	4,13	22,70	0		
EDR2280-095-KD	4,15	22,80	0		
EDR2290-095-KD	4,17	22,90	0	•	
EDR2300-100-KD	4,18	23,00	•		
EDR2310-100-KD	4,20	23,10	0	•	
EDR2320-100-KD	4,22	23,20	0		
EDR2330-100-KD	4,24	23,30	•	7TE015 ED220 **	
EDR2340-100-KD	4,26	23,40	0	ZTE015-ED230-** ZTE03-ED230-** ZTE05-ED230-**	
EDR2350-100-KD	4,27	23,50	•		
EDR2360-100-KD	4,29	23,60	0	ZTE08-ED230-**	
EDR2370-100-KD	4,31	23,70	0		
EDR2380-100-KD	4,33	23,80	0		
EDR2390-100-KD	4,35	23,90	0		


[•] Ab Lager o Auf Anfrage

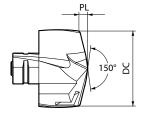
A

Bohrköpfe



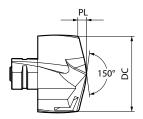
	Abmessung	gen [mm]	Sorte				
Artikel	PI	Dc	KDG303	Bohrkörper	Schlüssel		
EDR2400-110-KD	4,37	24,00	•				
EDR2410-110-KD	4,38	24,10	0				
EDR2420-110-KD	4,40	24,20	0				
EDR2430-110-KD	4,42	24,30	0	ZTE015-ED240-**			
EDR2440-110-KD	4,44	24,40	0	ZTE03-ED240-**			
EDR2450-110-KD	4,46	24,50	•	ZTE05-ED240-**			
EDR2460-110-KD	4,48	24,60	0	ZTE08-ED240-**			
EDR2470-110-KD	4,49	24,70	0				
EDR2480-110-KD	4,51	24,80	0				
EDR2490-110-KD	4,53	24,90	0		ZTK21-25.9		
EDR2500-115-KD	4,55	25,00	•				
EDR2510-115-KD	4,57	25,10	0				
EDR2520-115-KD	4,58	25,20	0				
EDR2530-115-KD	4,60	25,30	0	ZTE015-ED250-**			
EDR2540-115-KD	4,62	25,40	0	ZTE03-ED250-**			
EDR2550-115-KD	4,64	25,50	•	ZTE05-ED250-**			
EDR2560-115-KD	4,66	25,60	0	ZTE08-ED250-**			
EDR2570-115-KD	4,68	25,70	0				
EDR2580-115-KD	4,69	25,80	0				
EDR2590-115-KD	4,70	25,90	0				

EDR-PD


	Abmessu	ngen [mm]	Sorte		
Artikel	Pl	Dc	KDG3013	Bohrkörper	Schlüssel
EDR1200-045-PD	1,61	12,03	•		
EDR1210-045-PD	1,63	12,13	0		
EDR1220-045-PD	1,64	12,23	0	ZTE015-ED120-**	
EDR1230-045-PD	1,65	12,33	0		
EDR1240-045-PD	1,67	12,43	0		
EDR1250-045-PD	1,68	12,53	•		
EDR1260-045-PD	1,69	12,63	0		
EDR1270-045-PD	1,71	12,73	0	ZTE015-ED120-**	
EDR1280-045-PD	1,72	12,83	0		
EDR1290-045-PD	1,73	12,93	0		
EDR1300-050-PD	1,75	13,03	•		
EDR1310-050-PD	1,76	13,13	0		
EDR1320-050-PD	1,77	13,23	0	ZTE015-ED130-**	
EDR1330-050-PD	1,79	13,33	0		
EDR1340-050-PD	1,80	13,43	0		
EDR1350-050-PD	1,81	13,53	•		
EDR1360-050-PD	1,83	13,63	0		
EDR1370-050-PD	1,84	13,73	0	ZTE015-ED130-**	
EDR1380-050-PD	1,85	13,83	0		
EDR1390-050-PD	1,87	13,93	0		77/12 15 0
EDR1400-055-PD	1,88	14,03	•		ZTK12-15.
EDR1410-055-PD	1,89	14,13	0		
EDR1420-055-PD	1,91	14,23	0	ZTE015-ED140-**	
EDR1430-055-PD	1,92	14,33	0		
EDR1440-055-PD	1,93	14,43	0		
EDR1450-055-PD	1,95	14,53	•		
EDR1460-055-PD	1,96	14,63	0		
EDR1470-055-PD	1,97	14,73	0	ZTE015-ED140-**	
EDR1480-055-PD	1,99	14,83	0		
EDR1490-055-PD	2,00	14,93	0		
EDR1500-060-PD	2,01	15,03	•		
EDR1510-060-PD	2,03	15,13	0		
EDR1520-060-PD	2,04	15,23	0		
EDR1530-060-PD	2,05	15,33	0		
EDR1540-060-PD	2,07	15,43	0	777045 5 5	
EDR1550-060-PD	2,08	15,53	•	ZTE015-ED150-**	
EDR1560-060-PD	2,09	15,63	0		
EDR1570-060-PD	2,11	15,73	0		
EDR1580-060-PD	2,12	15,83	0		
EDR1590-060-PD	2,13	15,93	0		

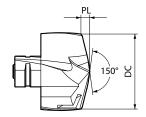
EDR1590-060-PD ◆ Ab Lager ○ Auf Anfrage

EDR-PD



	Abmessur	ngen [mm]	Sorte			
Artikel	PI	Dc	KDG3013	Bohrkörper	Schlüssel	
EDR1600-065-PD	2,15	16,03	•			
EDR1610-065-PD	2,16	16,13	0			
EDR1620-065-PD	2,17	16,23	0			
EDR1630-065-PD	2,19	16,33	0			
EDR1640-065-PD	2,20	16,43	0	775045 50460 **		
EDR1650-065-PD	2,21	16,53	•	ZTE015-ED160-**		
EDR1660-065-PD	2,23	16,63	0			
EDR1670-065-PD	2,24	16,73	0			
EDR1680-065-PD	2,25	16,83	0			
EDR1690-065-PD	2,27	16,93	0			
EDR1700-070-PD	2,28	17,03	•			
EDR1710-070-PD	2,30	17,13	0			
EDR1720-070-PD	2,31	17,23	0			
EDR1730-070-PD	2,32	17,33	0			
EDR1740-070-PD	2,34	17,43	0	ZTE015-ED170-**		
EDR1750-070-PD	2,35	17,53	•	Z1E013-ED170-***		
EDR1760-070-PD	2,36	17,63	0			
EDR1770-070-PD	2,38	17,73	0		ZTK16-20.9	
EDR1780-070-PD	2,39	17,83	0			
EDR1790-070-PD	2,40	17,93	0			
EDR1800-075-PD	2,42	18,03	•			
EDR1810-075-PD	2,43	18,13	0			
EDR1820-075-PD	2,44	18,23	0			
EDR1830-075-PD	2,46	18,33	0			
EDR1840-075-PD	2,47	18,43	0	ZTE015-ED180-**		
EDR1850-075-PD	2,48	18,53	•	Z1E013-ED100-***		
EDR1860-075-PD	2,50	18,63	0			
EDR1870-075-PD	2,51	18,73	0			
EDR1880-075-PD	2,52	18,83	0			
EDR1890-075-PD	2,54	18,93	0			
EDR1900-080-PD	2,55	19,03	•			
EDR1910-080-PD	2,56	19,13	0			
EDR1920-080-PD	2,58	19,23	0			
DR1930-080-PD	2,59	19,33	•			
EDR1940-080-PD	2,60	19,43	0	ZTE015-ED190-**		
EDR1950-080-PD	2,62	19,53	•	Z1E013-ED190-""		
EDR1960-080-PD	2,63	19,63	0			
EDR1970-080-PD	2,64	19,73	0			
EDR1980-080-PD	2,66	19,83	0			
EDR1990-080-PD	2,67	19,93	0			

EDR-PD


	Abmessu	ngen [mm]	Sorte				
Artikel	PI	Dc	KDG3013	Bohrkörper	Schlüssel		
EDR2000-085-PD	2,68	20,03	•				
EDR2010-085-PD	2,70	20,13	0				
EDR2020-085-PD	2,71	20,23	0				
EDR2030-085-PD	2,72	20,33	0				
EDR2040-085-PD	2,74	20,43	0	7TE045 FD200 **	77/16 20 0		
EDR2050-085-PD	2,75	20,53	•	ZTE015-ED200-**	ZTK16-20.9		
EDR2060-085-PD	2,76	20,63	0				
EDR2070-085-PD	2,78	20,73	0				
EDR2080-085-PD	2,79	20,83	0				
EDR2090-085-PD	2,80	20,93	0				
EDR2100-090-PD	2,82	21,03	•				
EDR2110-090-PD	2,83	21,13	0				
EDR2120-090-PD	2,84	21,23	0				
EDR2130-090-PD	2,86	21,33	0				
EDR2140-090-PD	2,87	21,43	0	7TF015 FD210 **			
EDR2150-090-PD	2,88	21,53	•	ZTE015-ED210-**			
EDR2160-090-PD	2,90	21,63	0				
EDR2170-090-PD	2,91	21,73	0				
EDR2180-090-PD	2,92	21,83	0				
EDR2190-090-PD	2,94	21,93	0		-		
EDR2200-095-PD	2,95	22,03	•				
EDR2210-095-PD	2,96	22,13	0				
EDR2220-095-PD	2,98	22,23	0				
EDR2230-095-PD	2,99	22,33	0		77/21 25 0		
EDR2240-095-PD	3,01	22,43	0	7TF015 FD220 **			
EDR2250-095-PD	3,02	22,53	•	ZTE015-ED220-**	ZTK21-25.9		
EDR2260-095-PD	3,03	22,63	0				
EDR2270-095-PD	3,05	22,73	0				
EDR2280-095-PD	3,06	22,83	0				
EDR2290-095-PD	3,07	22,93	0				
EDR2300-100-PD	3,09	23,03	•				
EDR2310-100-PD	3,10	23,13	•				
EDR2320-100-PD	3,11	23,23	0				
EDR2330-100-PD	3,13	23,33	•				
EDR2340-100-PD	3,14	23,43	0	7TE015 ED220 **			
EDR2350-100-PD	3,15	23,53	•	ZTE015-ED230-**			
EDR2360-100-PD	3,17	23,63	0				
EDR2370-100-PD	3,18	23,73	•				
EDR2380-100-PD	3,19	23,83	0				
EDR2390-100-PD	3,21	23,93	0				

Weitere Hinweise zur Nutzung der **PD-Geometrie** (Pilotbohrung ab 8xD empfohlen) finden Sie auf Seite C79.

	Abmessun	gen [mm]	Sorte				
Artikel	Pl	Dc	KDG3013	Bohrkörper	Schlüssel		
EDR2400-110-PD	3,22	24,03	•				
EDR2410-110-PD	3,23	24,13	0				
EDR2420-110-PD	3,25	24,23	0				
EDR2430-110-PD	3,26	24,33	0				
EDR2440-110-PD	3,27	24,43	0	ZTE015-ED240-**			
EDR2450-110-PD	3,29	24,53	•	Z1EU13-ED240-**			
EDR2460-110-PD	3,30	24,63	0				
EDR2470-110-PD	3,31	24,73	0		ZTK21-25.9		
EDR2480-110-PD	3,33	24,83	0				
EDR2490-110-PD	3,34	24,93	0				
EDR2500-115-PD	3,35	25,03	•				
EDR2510-115-PD	3,37	25,13	0				
EDR2520-115-PD	3,38	25,23	0				
EDR2530-115-PD	3,39	25,33	0				
EDR2540-115-PD	3,41	25,43	0	7TE015 ED350 **			
EDR2550-115-PD	3,42	25,53	•	ZTE015-ED250-**			
EDR2560-115-PD	3,43	25,63	0				
EDR2570-115-PD	3,45	25,73	0				
EDR2580-115-PD	3,46	25,83	0				
EDR2590-115-PD	3,47	25,93	0				

Weitere Hinweise zur Nutzung der **PD-Geometrie** (Pilotbohrung ab 8xD empfohlen) finden Sie auf Seite C79.

Wechselkopfbohrer

					Ι		Schr	nittgeschwing	ligkeit v _c [m	/min]		
					Zerspanungsgruppe	Ø 12	-25,9	Ø 12		1	!-25,9	
			Brinell-	Isgru	1,5-3xD (GD)		5xD			(GD)		
	Werkstoffgruppe	Zusammensetzung/Gefüg	e/Wärmebehandlung	Härte HB	gunt	-	KDG3013		3013		3013	
					spar	1.00		1.00	DG3013 RDG301			
					Zer	Vc [m/min]	f-Gruppe	Vc [m/min]	f-Gruppe	Vc [m/min]	f-Gruppe	
		ca. 0,15 % C	geglüht	125	1	130	18	100	17	80	16	
		ca. 0,45 % C	geglüht	190	2	110	18	90	17	70	16	
	Unlegierter Stahl	ca. 0,45 % C	vergütet	250	3	100	18	80	17	60	16	
		ca. 0,75 % C	geglüht	270	4	85	18	70	17	50	16	
		ca. 0,75 % C	vergütet	300	5	75	18	60	17	45	16	
Р			geglüht	180	6	110	18	90	17	70	16	
_			vergütet	275	7	85	18	70	17	50	16	
	Niedriglegierter Stahl		vergütet	300	8	75	18	60	17	45	16	
			vergütet	350	9	65	18	50	17	40	16	
	Hochlegierter Stahl und hoch-		geglüht	200	10	100	18	80	17	60	16	
	legierter Werkzeugstahl		gehärtet und angelassen	325	11	75	18	60	17	45	16	
		ferritisch/martensitisch	geglüht	200	12	60	18	50	17	40	16	
		martensitisch	vergütet	240	13	35	18	30	17	25	16	
M	Nichtrostender Stahl	austenitisch	abgeschreckt	180	14	40	18	30	17	25	16	
		austenitisch-ferritisch		230	15	35	18	30	17	25	16	
	Grauguss	perlitisch/ferritisch		180	16	125	18	100	17	75	16	
		perlitisch (martensitisch)		260	17	100	18	80	17	60	16	
.,		ferritisch		160	18	110	18	90	17	60	16	
K	Gusseisen mit Kugelgraphit	perlitisch		250	19	70	18	60	17	40	16	
	Tommorques	ferritisch		130	20	120	18	100	17	70	16	
	Temperguss	perlitisch		230	21	70	18	60	17	40	16	
		nicht aushärtbar		60	22	180	18	140	17	110	16	
	Aluminium-Knetlegierungen	aushärtbar	ausgehärtet	100	23	180	18	140	17	110	16	
		≤ 12 % Si, nicht aushärtbar		75	24	180	18	145	17	110	16	
N.	Aluminium-Gußlegierungen	≤ 12 % Si, aushärtbar	ausgehärtet	90	25	180	18	145	17	110	16	
N		> 12 % Si, nicht aushärtbar		130	26	180	18	145	17	110	16	
		Automatenlegierungen, PB > 1 9	6	110	27	-	-	-	-	-	-	
	Kupfer und Kupferlegierungen (Bronze/Messing)	CuZn, CuSnZn	90	28	-	-	-	-	-	-		
	(Bronze/Wessing)	CuSn, bleifreies Kupfer und Elekt	rolytkupfer	100	29	-	-	-	-	-	-	
			geglüht	200	30	-	-	-	-	-	-	
		Fe-Basis	ausgehärtet	280	31	-	-	-	_	-	-	
	Warmfeste Legierungen		geglüht	250	32	-	-	-	-	-	_	
S		Ni- oder Co-Basis	ausgehärtet	350	33	-	-	-	-	-	-	
_			gegossen	320	34	-	-	-	-	-	-	
		Reintitan		R _m 400	35	-	-	-	-	-	-	
	Titanlegierungen	Alpha- + Beta-Legierungen	ausgehärtet	R _m 1050	36	-	-	-	-	-	_	
			gehärtet und angelassen	55 HRC	37	60	16	50	16	40	16	
	Gehärteter Stahl		gehärtet und angelassen	60 HRC	38	-	-	-	-	-	-	
Н	Hartguss		gegossen	400	39	-	-	-	-	-	-	
	Gehärtetes Gusseisen		gehärtet und angelassen	55 HRC	40	50	16	40	16	30	16	
	Schuletes Gusselsen	Thermoplaste			41	-	-	-	-	-	-	
		Duroplaaste			42	-	-	-	-	-	-	
\ <u></u>		Glasfaserverstärkter Kunststoff G	iFK		43	-	-	-	-	-	-	
X	Nichtmetallische Werkstoffe	Kohlefaserverstärkter Kunststoff	GFK		44	-	-	-	-	-	-	
		Graphit			45	-	-	-	-	-	-	
		Holz			46	-	-	-	-	-	-	
Hinv	ı veise: Bei den vorgegebenen Schr	ı nittdaten handelt es sich um Richt	werte, welche unter Idealbe	dingungen	ermitte	elt wurden.						

e: bei den vorgegebenen Schnittdaten nandert es sich um kichtwerte, weiche unter idealbegingungen e Je nach Anwendungsfall müssen sie individuell angepasst werden. Bei Bohrungstiefen von 5xD sind die Schnittdaten dem entsprechenden Anwendungsfall anzupassen. f-Gruppe = Vorschubempfehlungen befinden sich auf Seite C98. Werkstoffbeispiele für Zerspanungsgruppen finden Sie auf Seite D11.

Schnittgeschwindigkeit v _c [m/min]														
Ø 12-25,9		Ø 12	Ø 12-25,9 Ø 12-25,9		-25,9	Ø 12-	-25,9							
1,5-3xD (KD)		5xD (KD)		8xD (KD)		1,5-3xD (PD)								
KDG303		KDG303		KDG303		KDG3013								
												-	 	
 Vc [m/min]	f-Gruppe	Vc [m/min]	f-Gruppe	Vc [m/min]	f-Gruppe	Vc [m/min]	f-Gruppe							
130	18	100	17	80	16	130	18							
110	18	90	17	70	16	110	18							
100	18	80	17	60	16	100	18							
85	18	70	17	50	16	85	18							
 75	18	60	17	45	16	75	18							
 110	18	90	17	70	16	110	18							
 85	18	70	17	50	16	85	18							
 75	18	60	17	45	16	75	18							
65	18	50	17	40	16	65	18							
100	18	80	17	60	16	100	18							
75	18	60	17	45	16	75	18							
-	-	-	-	-	-	60	18							
-	-	-	_	-	-	35	18							
-	-	-	_	-	-	40	18							
-	-	-	_	-	_	35	18							
125	18	100	17	75	16	125	18							
100	18	80	17	60	16	100	18							
110	18	90	17	60	16	110	18							
70	18	60	17	40	16	70	18							
120	18	100	17	70	16	120	18							
70	18	60	17	40	16	70	18							
-	-	-	-	-	-	180	18							
-	-	-	-	-	1	180	18							
-	-	-	-	-	-	180	18							
-	-	-	-	-	-	180	18							
 -	-	-	-	-	-	180	18							
 -	-	-	_	-	-	-	-							
-	-	-	-	-	-	-	-							
-	-	-	_	-	_	-	-							
-	-	-	-	-	-	-	-							
-	-	-	-	-	-	-	-							
-	-	-	-	-	_	-	-							
-	-	-	-	-	-	-	-							
-	-	-	-	-	-	-	-							
-	-	-	-	-	-	-	-							
-	-	-	-	-	-	-	-							
60	16	50	16	40	16	60	16							
-	-	-	-	-	-	-	-							
-	-	-	-	-	-	-	-							
50	16	40	16	30	16	50	16							
-	-	-	-	-	-	-	-							
-	-	-	-	-	-	-	-							
-	-	-	-	-	-	-	-							
-	-	-	-	-	-	-	-							
-	-	-	-	-	-	-	-							
-	-	-	-	-	-	-	-							

Vorschubempfehlung

Wechselkopfbohrer

f-Gruppe							Vorschu	ıb [mm]						
i-Gruppe	Ø12	Ø13	Ø14	Ø15	Ø16	Ø17	Ø18	Ø19	Ø20	Ø21	Ø22	Ø23	Ø24	Ø25
16	0,15	0,155	0,16	0,17	0,175	0,18	0,19	0,195	0,2	0,21	0,22	0,225	0,23	0,24
17	0,19	0,2	0,21	0,22	0,225	0,23	0,24	0,25	0,26	0,27	0,28	0,29	0,3	0,31
18	0,21	0,22	0,23	0,24	0,25	0,26	0,27	0,28	0,29	0,3	0,31	0,32	0,33	0,34

Hinweise: Bei den vorgegebenen Schnittdaten handelt es sich um Richtwerte, welche unter Idealbedingungen ermittelt wurden. Je nach Anwendungsfall müssen sie individuell angepasst werden.

138 | PNK | v1.0 | 1.5 | 09.25

Europazentrale

ZCC Cutting Tools Europe GmbH

www.zccct-europe.com

Wanheimer Str. 57, 40472 Düsseldorf, Germany

Tel.: +49 (0)211-989240-0 Fax: +49 (0)211-989240-111 E-mail: info@zccct-europe.com

Zweigniederlassung Italien

ZCC Cutting Tools Europe GmbH Italy Branch

www.zccct-europe.com Via Giuseppe di Vittorio 24 20068 Peschiera Borromeo (Milano), Italia Tel.: +49 (0) 211-989240-390 E-mail: infoit@zccct-europe.com

Zweigniederlassung UK

Zweigniederlassung Frankreich

Succursale Française

www.zccct-europe.com

Tel.: +33 (0)2 45 41 01 40

Fax: +33 (0)800 74 27 27

E-mail: ventes@zccct-europe.com

ZCC Cutting Tools Europe GmbH UK Division

ZCC Cutting Tools Europe GmbH

14, Allée Charles Pathé, 18000 Bourges, France

www.zccct-europe.com 4200 Waterside Centre, Solihull Parkway, Birmingham Business Park. Birmingham, West Midlands, B37 7YN, UK Tel.: +49 (0) 211-989240-360 E-mail: infouk@zccct-europe.com

© Copyright by ZCC Cutting Tools Europe GmbH